
Functional Analysis WS 13/14, by HGFei

HERE you will find material concerning the course “Functional Analysis”, held du-
ring the winter term 2013/14 at the Faculty of Mathematics, University Vienna.

Material (Skripten) of other/earlier courses by hgfei can be find at this page

http://www.univie.ac.at/NuHAG/FEICOURS/ws1314/FAws1314Fei.pdf

later on: http://www.univie.ac.at/nuhag-php/home/skripten.php

See also:

http://www.univie.ac.at/nuhag-php/login/skripten/data/AKFA1213.pdf

for details concerning Banach algebras, Fourier transforms etc. (ca. 95pg).
Exercises found at:

http://homepage.univie.ac.at/monika.doerfler/UEFA13.html

Certainly a very interesting (new) reference is the book “Linear Functional Analysis”
by Joan Cerda (AMS publication, [2]). I do not yet have this book in our library, maybe
in the main library.
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1 Summary, Material to Digest

1.1 Core Material, Ideas, Motivation

TEST of notations and new symbols... The goal of the functional analysis course to
provide a good general background of the theory of normae spaces and in particular
Banach spaces and Banach algebras, bounded linear operators between such spaces, and
in particular those into the field C resp. R, i.e. the linear functionals1, which constitute
the dual space (B′, ‖ · ‖B′). Therefore checking whether a given space is complete with
respect to a suitably chosen norm, realizing certain continuous embeddings, establishing
the boundedness of some operator or determine the condition number of an isomorphism
of two Banach spaces are among the things to be understood and verified in a number
of concrete examples.

In addition that course should raise awareness about the differences between finite
dimensional and infinite dimensional situations (see subsection in this direction, towards
the end of the script).

1.2 Beyond the Scope of this Course

What this course will not provide is e.g. a detailed background concerning topological
vector spaces, or the theory of distributions (generalized functions).

Siehe u.a. auch das Buch von Dirk Werner [16]

http://de.wikipedia.org/wiki/Dualraum#

Der_starke_Dualraum_eines_lokalkonvexen_Raums

http://de.wikipedia.org/wiki/Schwach-*-Topologie

WICHTIG:

http://de.wikipedia.org/wiki/Satz_von_Banach-Alaoglu

Details on this topic publically available in:

http://www.mathematik.uni-muenchen.de/~lerdos/WS06/FA/alaoglu.pdf

1This is were the name of the theory, “functional analysis” comes from!
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2 Basic Definitions, Banach Spaces

We take the concept of vector spaces (typically denoted by V,W etc.) over a field
(“Körper in German), e.g. K = C or R as granted.

A vector space (or a linear space) allows to form finite linear combinations of its
elements (viewed as “arrows” or just as points, with the usual rules of computation).
Therefore in any such vector space the concept of linear independence is well defined, as
well as the concept of “generating systems”.

A set M ⊂ V is called linear independent if every finite linear subset is linear in-
dependent in the classical set. As we will see later this is a bit in contrast with the
consideration of infinite sums that we will promoted as a better concept during the rest
of the course.

Recall that the core material of Linear Algebra concerns finite dimensional vector
spaces and linear mappings between them. Due to the existence of finite bases their
theory is equivalent to matrix analysis, the composition (or inversion) of linear mappings
is equivalent to the corresponding action on matrices.

However, for many applications there are spaces which are too large to be finite
dimensional. So clearly one thinks of infinite-dimensional spaces. But this should not
be mis-interpreted as space having an infinite basis (!). In fact, there are Banach space
which do not have a basis, the first example was found by Per Enflo in 1973, [6]. In fact
the discussion of bases in Banach spaces is a fairly complicated field, if carried out in
full generality (see the books of I. Singer, [14]).

Therefore it is important to understand “infinite-dimensional” as the logical negation
of “finite-dimensional”: A space is not-finite dimensional if for every k ∈ N there exist
more (in the sense of “at least”) k linear independent vectors. A prototypical example
is the space of polynomial functions P(R) of all polynomial functions on the real line,
because the infinite set of monomials {1, t, t2, ...} is a linear independent set (for obvious
reasons).

There is a number of important concepts that are at the starting point of functional
analysis.

Definition 1. A function x 7→ ‖x‖ from V → R+ is called a norm on the vector space
V if it has the following three properties

1. ‖x‖ = 0⇒ x = 0 ∈ V;

2. ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (called the triangular inequality, symbol used: =
∆

);

3. ‖λx‖ = |λ|‖x‖ ∀x ∈ V, λ ∈ K;

A vector space V equipped with a norm ‖ · ‖ is called a normed vector space (V, ‖ · ‖).

Definition 2. A set M ⊆ V is called total in (V, ‖ · ‖) if its closed linear span coincides
with the whole normed space V.

Rewritten explicitly: For any v ∈ V and ε > 0 there exists a finite linear combination
of elements from M , i.e. some vector vM =

∑K
k=1 ckmk with ‖v − vM‖V≤ ε.

Definition 3. Convergent sequences, Cauchy sequence (CS) in (V, ‖ · ‖); usual facts.

5



Definition 4. A normed space which is complete, i.e. with the property that every CS
has a limit in (V, ‖ · ‖), is called a Banach space, hence we use (mostly!) from now on(
B, ‖ · ‖B

)
as a description of a Banach space.

Definition 5. For a given norm there is a natural metric on V defined by

d(v,w) := ‖v −w‖, v,w ∈ V. (1)

Proposition 1. The mapping defined via equ. 1 is indeed a metric on V, i.e. satisfies
the usual three axioms:

1. d(v,w) = 0⇒ v = w;

2. d(v,w) = d(w,v), (symmetry);

3. d(v,x) ≤ d(v,w) + d(w,x),x,v,w ∈ V; (Triangle inequality, ∆).

It is also translation invariant, i.e.

d(v + x,w + x) = d(v,w). (2)

As an obvious consequence the open ball of radius r, denoted by Br(v) around v ∈ V
is the same as moving the corresponding ball Br(0), i.e. we have Br(v)

2.1 Basic Facts concerning Banach spaces

Proposition 2. Any closed subspace B0 of a Banach space
(
B, ‖ · ‖B

)
, endowed with

the norm inherited from
(
B, ‖ · ‖B

)
, is a Banach space itself.

Also the converse is true: Assume that a subspace B0 ⊆ B is a Banach space with
respect to the norm inherited from

(
B, ‖ · ‖B

)
, then it must be a closed subspace.

Proof. Details of the proof have been given during the course.
The direct part is easier and more important in practice: Assume that B0 is a closed

subspace of a Banach space
(
B, ‖ · ‖B

)
. In order to verify completeness of (B0, ‖ · ‖B)

we have to consider and arbitrary CS within (B0, ‖ · ‖B), e.g. (b0
k)
∞
k=1. Since it is also

(!obviously, the norm is the same) a CS in the larger space
(
B, ‖ · ‖B

)
it will be conver-

gent there, with some limit b ∈ B. Hence we are looking into the situation that we have
a convergent (!) sequence of elements from B0, but because this is (by assumption) a
closed subset the limit must also belong to B0. Altogether the given (arbitrary) CS has
a limit b ∈ B0, hence (B0, ‖ · ‖B) is a Banach space.

The verification of the converse is left to the reader.

As an application of the above principle let us establish basic facts concerning the
space C0(Rd) (in fact, this spaces, denoted by

(
C0(G), ‖ · ‖∞

)
, could be defined over any

locally compact group G instead of G = Rd).

Definition 6. .
Cc(Rd) := {k : Rd → C, k continuous, supp(k) compact}
where supp(k) is the closure of {x | k(x) 6= 0}, and
C0(Rd) := {f : Rd → C, f continuous, lim|x|→∞|f(x)| = 0}
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Proposition 3. The space
(
C0(Rd), ‖ · ‖∞

)
is the closure (resp. the closed linear span)

of Cc(Rd) in
(
Cb(Rd), ‖ · ‖∞

)
. Hence

(
C0(Rd), ‖ · ‖∞

)
is a Banach space, containing

Cc(Rd) as a dense subspace.

Proof. to be given soon (after the course next week). Try yourself first!

3 Bounded Linear Operators and Functionals

While in the finite-dimensional situations all linear mappings between two vector spaces
are considered, one has to exclude some “pathological cases” in the infinity dimensional
situation. Alternatively one can view the situation also in this way: The “natural” objects
of considerations are the continuous linear mappings. While linear mappings between
finite dimensional spaces are automatically (!) continuous 2 this is not true anymore if
the domain space is infinite dimensional (in the sense that for any N ∈ N there exist at
least N linear independent vectors in the space).

For this reason we are studying the “good linear mappings”, which also “respect the
convergence structure”.

Definition 7. A mapping T between metric spaces (e.g. normed spaces) is continuous
if the usual ε− δ-condition is satisfied, or equivalently (o.B.!) if T maps convergent
sequences (in the domain) to convergent sequences in the range; or in formulas

xn → x0 for n→∞ ⇒ T (xn)→ T (x0), for n→∞. (3)

Exercise 1. Show that the mapping v→ ‖v‖ from (V, ‖ · ‖) to (R, | · |) is continuous! 3

The norm also allows to define boundedness and thus clearly there is interest in
mappings between normed spaces “respecting boundedness”. For this reason let us give
the pertinent definitions:

Definition 8. A subset of a normed space M ⊆ (V , ‖ · ‖V ) is called bounded
(with respect to that specific norm) if

sup
m∈M

‖m‖V <∞.

Definition 9. A linear mapping T from (B1, ‖ · ‖(1)) to (B2, ‖ · ‖(2)) is called bounded
if there exists some constant C = C(T ) ≥ 0 such that

‖Tx‖(2) ≤ C‖x‖(1), for x ∈ B(1). (4)

The infimum over all such constants is called the operator norm of T , and we write |‖T |‖ .

Exercise 2. It is a good exercise to verify that

|‖T |‖ = sup
‖v‖V ≤1

‖T (v)‖ = sup
v 6=0

‖T (v)‖W
‖v‖V

. (5)

2o.B, i.e. “ohne Beweis”, resp. without proof, for now.
3In fact this is quite easy: using the estimate |‖u‖ − ‖v‖| ≤ ‖u− u‖, which is an immediate conse-

quence of the triangular inequality for the norm.
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If it concerns operators between two different norm spaces we will indicate that in
the subscripts.

Exercise 3. Show that a linear mapping T between two normed spaces is bounded if and
only if it maps bounded subsets into bounded subsets, i.e. iff it preserves boundedness.

It is easy to verify the following basic facts:

Lemma 1. (i) Given two bounded set M1 and M2 their complex sum, i.e. the set

M := M1 +M2 := {m |m = m1 +m2,m1 ∈M1,m2 ∈M2}

is a bounded set as well. In particular M is bounded if and only if x+M is bounded (for
some/all x ∈ V ).

(ii) A set is M is bounded if and only if λM is bounded for some (resp. all!) non-zero
scalars λ ∈ K.

Due to the fact that any linear mapping T is compatible with scalar multiplication
one easily finds (Ex.!) that T is bounded if and only if it maps the unit ball B1(0) into
some bounded set. Consequently it is natural to define the “size” (i.e. a norm) on the set
of bounded linear operators (generalizing the size of a matrix, in MATLAB: norm(A),
providing the maximal singular value!) as the size of T (B1(0)), or more precisly:

Definition 10.
|‖T |‖ := sup

‖v‖V ≤1

‖T (v)‖W.

Sometimes it is appropriate to indicate that the operator norm concerns a mapping
from (V , ‖ · ‖V ) to (W , ‖ · ‖W ) by using the symbol |‖T |‖V→W or in a similar situation
|‖T |‖B1→B2 . If the target space is the same as the domain of course only one of the two
symbols suffices, e.g. |‖T |‖B or |‖T |‖V .

Definition 11. A bounded linear mapping T between normed spaces with bounded
inverse is called an isomorphism of two normed spaces.

The condition number of T is defined by

cond(T ) := |‖T |‖B1→B2 · |‖T−1|‖B2→B1 , (6)

or in short (of the norms are clear) κ(T ) := |‖T |‖ · |‖T−1|‖ .

This quantity describes the quality of the isomorphism. More as an exercise on ter-
minology we note the following lemma:

Lemma 2. Let T be an isomorphism between two normed spaces (V 1, ‖ · ‖(1)) resp.
(V 2, ‖ · ‖(2)). Then (vk)

∞
k=1 is a CS in (V 1, ‖ · ‖(1)) if and only if (T (vk))

∞
k=1 is a CS in

(V 2, ‖ · ‖(2)). In particular isomorphic normed spaces are simultaneously either complete
(i.e. Banach) or incomplete.

It is then of course also true that isomorphic normed spaces will have isomorphic
completions.4

4The converse is of course not true for the following reason: Given a Banach space
(
B, ‖ · ‖B

)
and

a dense subspace with the same norm. Then their completion is isomorphic to
(
B, ‖ · ‖B

)
for both of

them, although - simply for set-theoretical reasons - they are not isomorphic as vector spaces.
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It is also easy to check the following claim:

Lemma 3. The composition of isomorphisms of normed spaces (as well as inverse of
isomorphism) are again isomorphisms (and the condition numbers multiply).

In particular one has: The set of automorphisms (i.e. isomorphism of a (V , ‖ · ‖V )
onto itself) forms a group.

Remark 1. For the finite dimensional case this situation is of course well known. Since
every finite dimensional vector space over the field K (e.g. R or C) is isomorphic to Kn

it is clear that in this case the linear isomorphisms (they are automatically continuous
in the finite dimensional case!) are just the mappings, which are described by invertible
n× n-matrices (for a fixed basis). In fact, the discussion of equivalence of matrices (via
conjugation: A 7→ C ∗A∗C−1) corresponds simply to the description of linear mappings
with respect to different bases. The resulting group of matrices is known in the literature
as GL(n,R).

A special class of bounded operators are the isometric ones:

Definition 12. A linear mapping between Banach spaces is called isometric if

‖T (x)‖B2 = ‖x‖B1 , ∀x ∈ B1.

T is an isometric isomorphism if it is isometric and also surjective5.

The unilateral shift in `2(N), which is even isometric, hence injective, but not sur-
jective is an instructive example of a situation that does not occur in finite dimensions,
because in the finite-dimensional context one can argue using bases.

If a mapping is isometric or just has only a trivial nullset, the image of a linear
independent set will stay linear independent. So the image of a basis under such a
mapping is a linear independent, and has of course the correct number of elements (
= dim(V)). Therefore any injective linear mapping on a finite dimensional mapping
is also surjective, hence an isomorphism (recall the different standard criteria for the
non-singularity of square matrices!).

Lemma 4. For any isometric isomorphism J one has cond(J) = 1.
Furthermore, for any isomorphism of T of (B, ‖ · ‖B) one has T ◦ J and J ◦ T are

isomorphisms as well with the same condition number.

The proof is left to the reader. Note that a special consequence of the above lemma
concerns unitary operators on Hilbert spaces (cf. below, they are just the analogue of
unitary, complex n× n-matrices in linear algebra). In particular it is clear that unitary
equivalent invertible linear mappings (like U1 ◦ T ◦ U2 and T ) have the same condition
number.

Remark 2. It is easy to check (Ex.) that a linear map is bounded if and only if the image
of the unit ball is a bounded set. In fact the “size” of a bounded linear map is defined
as the “size” of the unit ball under T , measured in the norm of the target space.
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Abbildung 1: TESTBILD

Definition 13. For b ∈
(
B, ‖ · ‖B

)
, ε > 0 one defines the ball of radius ε around b as

Bε(b) := {v ∈ B, ‖v − b‖ < ε}. (7)

Alternative typography using the macro “Ball” comes out equally: Bε(b)

Theorem 1. The operator norm is in fact a norm, and the space of bounded linear
operators is a normed space. If the target space is complete, then so is the space of linear
operators. In particular, the dual space, the space of linear operators (called functionals)
into the underlying field (R or C) is complete6.

Proof. The only interesting part (to be described here) is the completeness claim. As-
sume the (Tk)

∞
k=1 is a CS of operators in L(B), for some Banach space

(
B, ‖ · ‖B

)
(the

general case can be done by the reader in a similar way). Similarly to the proof of the
completeness of (C(I), ‖ · ‖∞), where one goes from uniform convergence of functions to
pointwise (ptw) convergence, we the same here. Fix any v ∈ V and look at the sequence
(Tk(v))∞k=1. Since

‖Tn(v)− Tm(v)‖W ≤ |‖Tn − Tm|‖V→W‖v‖V,

this is in fact a CS in W and therefore has a limit. Let us call this limit (defined first
for every v ∈ V separately) T (v), so at least we have a candidate for a limit operator.
We have to verify that the mapping v 7→ T (v) is in fact a linear and bounded operator,
and finally that |‖T − Tk|‖V→W → 0 for k →∞.

5... hence bijective, hence an isomorphism ...
6It is not necessary that the normed (V, ‖ · ‖) itself is complete, in order to have completeness of V∗

with its natural norm!
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Abbildung 2: TESTBILD2

In fact, for every given ε > 0 we can find k0 such thatm,n ≥ k0 implies |‖Tn − Tm|‖V→W <
ε > 0. For v ∈ V with ‖v‖V ≤ 1 this implies that

‖Tn(v)− Tm(v)‖W ≤ ε > 0,

and hence, by taking the limit

‖Tn(v)− T (v)‖W ≤ ε > 0, for n ≥ k0.

Lemma 5. A linear mapping T between two normed spaces is continuous if and only
if it is bounded, i.e. maps bounded sets into bounded sets. In fact, if T is continuous at
any point it is also continuous at zero and overall uniformly continuous.

Proof. The statement is in fact a statement showing that a homomorphism between to-
pological groups is continuous at zero of and only if it is (in fact even uniformly) conti-
nuous. We are here in a metric context, and use only the fact that T is compatible with
the additive structure of the involved vector spaces.
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Abbildung 3: TESTBILD3

So assume that T : V → W is a linear mapping continuous at some fixed element
v0 ∈ V. This means that for ε > 0 there exists δ > 0 such that

T (Bδ(v0)) ⊆ Bε (T (v0)) .

But since (!check it out yourself, using the properties of the norm)

Bδ(v0)− v0 = Bδ(0) ⊂ V and Bε(T (v0)) = T (v0) +Bε(0) ⊂W

this implies

T (Bδ(0)) = T ((Bδ(v0))− T (v0) = T (Bδ(v0)) ⊆ Bε (T (v0))− T (v0) = Bε(0).

Multiplying both sides in the last containment relation by 1/δ we obtain T (B1(0)) ⊆
Bε/δ(0) in the target space, or boundedness of the linear mapping, with a constant
C ≤ ε/δ.

The proof that a bounded linear mapping is uniformly continuous, with ε(δ) ≤
δ |‖(|‖T ) is an easy exercise, using almost the same arguments.

The following simple result is quite useful in many application situations.

Lemma 6. Assume that T is a bounded linear mapping from a dense subspace D in
(B1, ‖ · ‖(1)) into a Banach space (B2, ‖ · ‖(2)). Then there is a uniquely determined
extension of T (we keep the name) to all of (B1, ‖ · ‖(1)).

Proof. Since D is a dense subspace of (B1, ‖ · ‖(1)) for any given x ∈ B1 there exists a
sequence (dk)

∞
k=1 such that x = limk→∞dn, hence (dk)

∞
k=1 is a CS in (B1, ‖ · ‖(1)), which

is mapped onto a CS in (B2, ‖ · ‖(2)) due to the boundedness of T :

‖T (dn)− T (dm)‖B2 ≤ |‖T |‖B1→B2‖dn − dm‖B1 .

12



According to the completeness of (B2, ‖ · ‖(2)) this CS has a limit, which is in fact
independent independent from the CS chosen (! mix two CS sequence to verify this
uniqueness claim!) the only possible definition for T (x) is via the limit relation

T (x) := lim
k→∞

T (dn).

Remark 3. In many cases the technical realization of this extension is not necessarily by
the same method.

Application: Proof of Plancherel’s theorem. L1 ∩ L2 is a dense subspace of L2(Rd),
and the Fourier transform can be shown to be an isometry on L1 ∩L2. The range of F
is dense in L2(Rd). Thus the above arguments are crucial for the proof of the following
theorem:

Theorem 2. PLANCHEREL’s THEOREM (TEX-block 485?)
The Fourier transform f 7→ F(f) is an isometric mapping from (L1∩L2)(Rd), ‖ · ‖2)

into
(
L2(Rd), ‖ · ‖2

)
, with dense range. Therefore it can be extended from this dense sub-

space of
(
L2(Rd), ‖ · ‖2

)
to the whole space. It is convenient to call this unique extension

the Fourier-Plancherel transform7, which is then establishing an isometric automorphism
on
(
L2(Rd), ‖ · ‖2

)
(later we view it as a unitary mapping, because it also preserves scalar

products).

3.1 The Big Theorems Concerning Operators

Theorem 3. Assume that T is a bijective and bounded linear operator from a Banach
space (B1, ‖ · ‖(1)) to another Banach space (B2, ‖ · ‖(2)) Then the two spaces are iso-
morphic, i.e. the linear mapping T has a bounded inverse, resp. T is an isomorphism
between the two spaces.

Equivalently, elements of the unit sphere (i.e. with norm one) have images well se-
parated from zero, or formulated directly, by claiming that there exists some C0 > 0 such
that

‖T (x)‖B2 ≥ C0 ‖x‖B1 for x ∈ B1. (8)

Proof. First of all it is clear that the identity mapping is a continuous mapping from
(B1, ‖ · ‖(1)) to (B2, ‖ · ‖(2)) by assumption. If the norms are equivalent on B1 then it
is also a bounded linear mapping from (B1, ‖ · ‖(2) to (B2, ‖ · ‖(2)).

Proof. This is one of the basic theorems about Banach spaces and has a non-trivial proof,
involving Baire’s category theorem. It indicates that invertibility as a mapping plus good
mapping properties in the forward direction automatically imply good properties of the
inverse mapping (linearity is obvious in the same way as in the linear algebra courses).
Boundedness is the issue.

7Just at the beginning, to distinguish it from the classical FT defined using and integral transform,
because it is not true anymore that for any f ∈ L2(Rd) the Plancherel transform can be obtained
pointwise, not even almost everywhere (a.e.) using integrals, even if one makes use of the best possible,
namely the Lebesgue integral.
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There are many applications of this “strong” result Let us provide two of them:

Corollary 1. Given a vector space V, endowed with two comparable norms, i.e. a weaker
and a stronger one, or more precisely with the property, that for some C > 0 one has
(without loss of generality)

‖v‖B2 ≤ C ‖v‖B1 for v ∈ V . (9)

If V is a Banach space with respect to both norms, then these norms are equivalent.

Proof. One just has to apply Banach’s theorem to the (obviously bijective) identity map-
ping from V to V . The assumption (9) then just expresses the assumption concerning
the boundedness of IdV as a mapping from (V , ‖ · ‖(1) to (V , ‖ · ‖(2).

Corollary 2. Assume that one has one Banach space (B1, ‖ · ‖(1)) continuously embed-
ded into another (larger) Banach space (B2, ‖ · ‖(2)), and dense in (B2, ‖ · ‖(2)).

Then the two spaces coincide if and only if the corresponding norms are equivalent.
Or in other words: if (and only if) the two norms are not equivalent, then the inclusion
must be a proper one.

Proof. TO BE DONE!

3.2 Closed Graph Theorem

Closed Graph Theorem
The closed graph theorem provides one of the most useful methods to check whether a
linear mapping between Banach spaces is bounded resp. continuous. It requires to make
use of the Graph of a mapping T from (B1, ‖ · ‖(1)) to (B2, ‖ · ‖(2)), namely

G(T ) := {(x, Tx) ∈ B1 ×B2}.

Theorem 4. A linear mapping T between two Banach spaces is bounded resp. continuous
if and only if it has closed graph, i.e. if and only if the set G(T ), considered as a linear
subspace of (B1, ‖ · ‖(1))× (B2, ‖ · ‖(2)) is a closed subspace.

In practice it suffices to show the following: Assume the (xn)∞n=1 is a sequence in
(B1, ‖ · ‖(1)) with limn→∞ xn = 0 and furthermore that the image sequence satisfies
z = limn→∞ Txn for some z ∈ B2, then one has to identify (only) that z = 0.

Proof. The necessity is obvious, i.e. the fact that any bounded, hence continuous linear
mapping T has closed graph.

So the interesting part of the argument (which will rely on Banach’s theorem) is the
verification that the closedness of the graph G(T ) already implies the continuity of the
mapping T .

In order to do so one only has to recall two facts:

• Obviously the mapping x 7→ (x, Tx) is a bijective mapping from a Banach space
to a subspace of the product space (B1, ‖ · ‖(1))× (B2, ‖ · ‖(2));

14



• If G(T ) is closed, it is a Banach space with respect to the norm in the product
space;

• It is also clear that the inverse mapping, (x, Tx) 7→ x is a continuous and surjective
mapping;

• hence by Banach’s theorem also the inverse of this mapping, which is obviously
x 7→ (x, Tx) must be continuous as well, hence in particular the mapping x→ Tx
from (B1, ‖ · ‖(1)) to (B2, ‖ · ‖(2)).

3.3 The Uniform Boundedness Principle

The UBP (also called PUB by J. Conway, [4]) concerns the behavior of pointwise con-
vergent sequences of operators. It will be discussed after some considerations concerning
alternative forms of convergence (aside from the usual norm convergence).

For the subsequent discussion we need one more of the big theorems of functional
analysis, the PUB (Principle of Uniform Boundedness).

See p.95 in [4] (Conway’s book):

Theorem 5. Let (B1, ‖ · ‖(1)) be a Banach space and (B2, ‖ · ‖(2)) be a normed space.
If a set M ⊂ L(B1,B2) is such that for every x ∈ B1 on has

sup{‖Tx‖B2 , T ∈M} <∞

(we may say that the family M of operators is pointwise bounded) then the set is also
bounded in the operator norm sense, i.e.

sup
T∈M
|‖T |‖B1→B2 <∞.

we do not provide a proof here for reasons of time

Lemma 7. Let B be a Banach space and M ⊂ B′. Then M is bounded (in B′) if and
only if it is pointwise bounded, i.e. if supb′∈M b′(b) <∞ for any b ∈ B.

There is also the Banach-Steinhaus Theorem.

Theorem 6. Let (Tn)∞n=1 be a sequence of bounded linear operators between two Banach
spaces, i.e. in L(B1,B2), which is pointwise convergent, i.e. Tn(x) is convergent for
any x ∈ B1. Then there exists some bounded linear operator T0 ∈ L(B1,B2) such
that Tn converges to T0 in the strong operator topology and that the sequence (Tn) is
(automatically) bounded in the operator norm sense:

sup
n≥0
|‖T |‖B1→B2 .

Proof. The main part of this theorem (cf. exercises) to show that the PUB implies

sup
n≥1
|‖T |‖B1→B2 ,

and hence this property is easily pushed to the limit, i.e. allows to include the limiting
index n = 0!
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The theorem is also known as the “gliding hump” theorem.
A variant of the UBP gives:

Lemma 8. A set M ⊂ B is bounded if and only if it is “weakly bounded”, i.e. for every
b′ ∈ B′ one has

sup{|b′(b)|,b ∈M} <∞.

[see [4], p.96]
Since boundedness can be expressed in a weak sense it may now not be not too

surprising to see that one has:

Proposition 4. A linear mapping T between two Banach spaces is bounded resp. conti-
nuous if and only if it is weakly-to-weakly continuous, i.e. if for every weakly convergent
net (xα)α∈I in the domain (B1, ‖ · ‖(1)) also the images (T (xα))α∈I is weakly convergent
in (B2, ‖ · ‖(2)).

Note: somehow one can think of the situation as follows: continuity turns out to
be equivalent to boundedness due to the linearity of T (and the compatibility of the
considered topologies with the vector space structure). Since we have already seen that
boundedness (in the norm senses) and boundedness in the weak sense is equivalent it is
not surprising that the corresponding continuity concepts turn out to be equivalent.

We have to check whether HB is used already so far! most likely the
material of this last sub-section has to be moved down

3.4 The Hahn-Banach Theorem

However there is a number of interesting consequences!

Corollary 3. Let V be a normed space, and M ⊂ V . Then M is bounded if and only
if for each v′ ∈ V′ one has

sup
v∈M

v′(v) <∞.

Proof. The trick is to consider the space V (just a normed space) as a subspace of V′′

(via HB it is isometrically embedded). And as such it is bounded within L(V ′,C). This
also “explains” why one does not need the completeness in this theorem!

The Hahn-Banach Theorem8 guarantees the existence of sufficiently many linear
functionals. A good summary is found in [11], section 9.

The linear algebra situation is quite simple: Assume a linear functional is given on
subspace W of a vector space V. Then one can easily extend it to the full vector space
by putting it to zero “on the rest”. But how can one really do it? The natural way
(in the finite dimensional setting) would be to first take any basis for W and then
extend it by adding more elements to a basis for the full space V. In this way one
can in principle expand every element of v in the full basis and project them into
W by ignoring the additional basis vectors (putting them to zero, of you want so).
This is certainly a linear procedure and also idempotent, i.e. applied to elements in the

8Hans Hahn was a professor at the University Vienna, look at the “Ehrentafel” at the entry hall of
our building, OMP1. See also WIKIPEDIA: Hans Hahn Mathematiker
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range of this linear mapping nothing changes anymore. Therefore, applying w∗ ∈ W∗

to the projected version of v provides us with a linear functional v∗ which is clearly an
extension of original functional. But what can be said about the norm of this extended
linear functional. It would be nice to know the norm of the projected elements, but in
the generality just described nothing can be said about their length. In particular, it
not at all clear whether the length of the projected vector should be smaller than the
original one?

Here is a short MATLOW experiment:

>> A = rand(5), B = pinv(A’),

>> xx = rand(5,1); xx = xx/norm(xx);

>> for kk = 1 : 5; norm( A(:,kk) * B(kk,:)), end

>> for kk = 1 : 5; norm( A(:,kk) * B(kk,:)*xx), end

It shows that most of the time at least in one direction the projection is longer than the
full vector!!

Of course one could (and should) an orthonormal basis for W and extend that to
an ONB of V, because then Pythagoras could demonstrate that the (now orthogonal)
projection onto W is non-expansive, hence the above procedure (putting the linear
functional zero on the orthogonal complement) works.

But what about infinite dimensions? Is there still any extension of a functional on
W to a functional on all of V (even if this is a huge Banach space?). Secondly - even in
the situation just described - it is not at all clear why/whether it is possible to keep the
norm of the linear functional unchanged during this extension process.

Both questions have a positive answer in the HB-Theorem, which comes in many
different versions. It concerns Banach spaces which are vector spaces over the real or
complex numbers. Let us first consider the crucial version, which concerns the real case:

Theorem 7. Assume that V0 is a linear subspace of a real vector space V. We assume
that there exists a linear map f0 : V0 → R, which is controlled by some sublinear function
p : V→ R 9 which means that

−p(y) ≤ f0(y) ≤ p(y) , ∀y ∈ V0

.
Then there exists a linear form extending f defined on all of V, i.e. with f(y) =

f0(y), ∀y ∈ V0, such that f is now also controlled by p in the sense of

−p(−v) ≤ f (v) ≤ p(v) ∀v ∈ V .

Since p(y) = ‖y∗‖Y∗‖y‖B is the most natural choice for such a sublinear functional,
if y∗ is a bounded linear functional on V0 one finds among others also some extension
b∗ with ‖b∗‖B∗ = ‖y∗‖Y∗.

needs correction: mix of space V ,B above! maybe separate corollary,
separation versions?

9This means that p is defined on all of V and satisfies p(αx) = αp(x) for α > 0 and p(x1 + x2) ≤
p(x1) + p(x2), ∀x1,x2 ∈ V.
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Here comes the revised version!
We describe first (following [11]) a real version of the theorem, which in fact makes

use of the total order of the real line! Since many important functionals on function space
(often called spaces of test functions) are generalized functions or measures, we denote
the functionals by the letters σ (rather than v∗ or y∗). In other words the theorem
involves a normed vector space (V, ‖ · ‖), a closed subspace V0 and the dual spaces V ∗0
and V P respectively.

Theorem 8. Assume that V0 is a linear subspace of a real vector space V . We assume
that there exists a linear map σ0 : V0 → R, which is controlled by some sublinear function
p : V→ R 10 such that p controls σ0, i.e. σ0(v0) ≤ p(v0) ,∀v0 ∈ V0.

Then there exists a linear form σ ∈ V ∗ extending σ0, i.e. which is defined on all of
V, i.e. with σ(v0) = σ0(v0), ∀v0 ∈ V0, such that σ is now also controlled by p in the
sense of

−p(−v) ≤ σ(v) ≤ p(v) ∀v ∈ V.

Since p(y) = ‖σ0‖V ∗0 ‖y‖V is the most natural choice for such a sublinear functional
for any σ0 ∈ V ∗0 , one finds among others also some extension σ with ‖σ‖V ∗ = ‖σ0‖V ∗0 ,
hence with ‖σ‖V ∗ = ‖σ0‖V ∗0 .

WARNING: some inconsistencies above

3.5 Existence of projections onto closed subspaces

NOTE: The simple relation

P 2 = P ⇒ (Id− P )2 = Id2 − 2P + P 2 = Id− P (10)

shows that the existence of a projection means that the space can be split into a direct
sum! Indeed as we see from (10) above also Id−P is a projection, and furthermore it is
trivial to observe that Id = P + (Id− P ), hence x = Px + (Id− P )x, or x = x1 + x2,
uniquely (!!, please check) with x1 in the range of P , and x2 in the range of the projection
(Id− P ).

The existence of such projections cannot be answered positively in the general case
(it is almost trivial in Hilbert spaces, because any subspace has an orthonormal bases,
and hence the projection can be written in the most natural way, almost as in Rn).

See [11], Satz 9.18, p.177:

Theorem 9. Let (V , ‖ · ‖V ) be any normed space and let W be a finite-dimensional
subspace (dim(W) = n). Then there exists a continuous projection P from V onto W,
i.e. (by definition) there exists a continuous linear map P from (V, ‖·‖) into (W, ‖ · ‖V),
with P 2 = P .

Proof. Given a basis v1, . . . ,vn for W one can find a uniquely determined dual basis (!
cf. linear algebra course) φ1, . . . , φn, i.e. a family of linear functionals on W with the
property

φk(vl) = δk,l, 1 ≤ k, l ≤ n.

10This means that p is defined on all of B and satisfies p(αx) = αp(x) for α > 0 and p(x1 + x2) ≤
p(x1) + p(x2), ∀x1,x2 ∈ V. The use of the letter p in this context is the traditional one.
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According to Hahn-Banach there exists bounded linear extensions v∗k, 1 ≤ k ≤ n, resp.
v∗k(w) = φk(w),∀w ∈W. The possible extensions can then be given by

P (v) :=
n∑
j=1

v∗j (v)vj, v ∈ V . (11)

However it is not true at all that one can find for a general closed subspace W in some
normed or even Banach space any continuous projection having W as its range!! The
spaces with this property (they are called complemented subspaces) can be characterized
as follows ( [11], Satz 9.17, p.176):

Proposition 5. A Banach space B is the direct topological sum of two subspaces B1⊕
B2, i.e. a direct sum with continuous projects on onto the individual subspaces if and
only if both spaces are closed.

Proof. The defining property of a projection, i.e. P 2 = P implies that the “complemen-
tary projection” defined by I − P . This is obviously also a continuous linear mapping,
and one has (I − P )2 = I − 2P + P 2 = I − P . Clearly I = P + (I − P ), hence the
following information about the range of the two operators: Ran(P ) + Ran(I − P ) = B
and Null(P ) ∩ Null(I − P ) = 0 (check it out!).

Next we show that Ran(P ) = Null(I − P ) resp. (changing roles) Ran(I − P ) =
Null(P ). We just have to verify that the range of a projection operator is exactly the set
of all invariant elements. In fact, y ∈ Ran(P ) if and only if y = P (b) for some b ∈ B.
But then P (y) = P 2(v) = P (v) = y. Conversely it is trivial that y = P (y) implies that
y ∈ Ran(P ). Since null-spaces are closed also the range spaces are closed. So altogether
we have a splitting of B into the direct sum of the two closed subspaces, namely

B = Ran(P )⊕ Null(P ). (12)

Conversely assume that we have a Banach space which is the direct sum of two
closed subspaces B1 and B2 (hence both of them are also Banach spaces with the
induced norm ‖ · ‖B). Then the product space is a Banach space and the linear mapping
T : B1 × B2 → B, defined by T (b1,b2) = b1 + b2 is clearly linear, bounded and
surjective, in fact bijective (since it is assumed to be a direct! sum). By Banach’s (open
mapping) theorem T is an isomorphism, and the proof is complete.

In the situation just described one calls B a topological direct sum of the two sub-
spaces B1 and B2, and one may write

B = B1⊕t B2

where the subscript t indicates “‘topologically”11.
Another immediate consequence of the Hahn-Banach theorem reads as follows:

11For non-closed subspaces one might have only a representation respecting the algebraic properties,
but not a continuous projection onto the direct factors. Hence we do not consider this case in the context
of functional analysis!
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Proposition 6. If W is a closed subspace of (V, ‖ · ‖) and v1 ∈ V \W. Then there
exists exists v∗ ∈ V∗ with v∗(w) = 0 ∀w ∈W, but v∗(v1) 6= 0.

Proof. We look at the quotient mapping π : V→ V/W. Since π(v1) 6= 0 (!) there exists
a bounded linear form φ on V/W with φ(πv1) 6= 0. Obviously v∗ := φ ◦ π is doing the
job. It is a bounded an linear mapping on all of V with the required property.

By an indirect argument one derives from this result

Corollary 4. Assume that W is a subspace of a normed space (V, ‖ · ‖), with the
property, that every linear functional on (V, ‖ · ‖) which vanishes on W must be the
zero-functional. Then W must be a dense subspace of (V, ‖ · ‖).

Corollary 5. For every b 6= 0 ∈
(
B, ‖ · ‖B

)
there exists some b∗ ∈ B∗, with ‖b∗‖B∗ = 1

such that b∗(b) = ‖b‖B.

Proof. This is just a consequence of the simple one-dimensional situation and the HB-
Theorem.

Reasonable?: It is convenient to reduce the discussion to the case that
‖b‖B = 1 (by suitable rescaling of b, because the general case is easily reduced
to this special case).

First choose the one-dimensional subspace B0 := [b] of scalar multiples of b. This
is a closed linear subspace, and we can define φ0(λb) := λ‖b‖B. This functional clearly
satisfies φ0(b) = ‖b‖B and is of norm 1 on B0 (check!).12 By the HB-Theorem this
functional can be extended to all of B with the same norm restriction, as it was claimed.

Corollary 5 above gives one of the most important consequences of the Hahn-
Banach Theorem:

Theorem 10. For every normed space there is a natural embedding of B into the double
dual space B′′, given by

iB(b)(b′) = b′(b), b ∈ B,b′ ∈ B′. (13)

which is isometric, hence injective. In particular, iB(B) is a closed subspace of B′′ (with
its natural norm).

There is an immediate question coming up in this context: For which Banach spaces
is the natural embedding iB surjective, i.e. a bijection: iB(B) = B′′? This situation is
important and deserves separate terminology:

Definition 14. A Banach space (B, ‖ · ‖B) is called reflexive if the natural embedding
iB : B → B′′ is an (automatically isometric) bijection between B and B′′.

Remark 4. Often one finds the statement, that a Banach space of reflexive if and only
if (B, ‖ · ‖B) is isomorphic to B′′ (as a naturally normed space). There are however
“exotic” examples of Banach spaces where such an isomorphism is possible even in the

12Since b is normalized one has ‖λb‖ ≤ 1 if and only if |λ| ≤ 1!
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case that the Banach space is itself is not reflexive in the sense of the above definition
(see [10]).

For the family of Lp-spaces one finds, that there is a natural identification of the
dual to

(
Lp, ‖ · ‖p

)
with

(
Lq, ‖ · ‖q

)
, for the case that 1 ≤ p < ∞, with the pairing

1/p+1/q = 1 resp. 1/q = 1−1/p. Note that sometimes people use the symbol p′ instead
of q for the conjugate index. The pairing is based on Hölder’s inequality, which implies
that under these circumstances on has

‖f · g‖1 ≤ ‖f‖p‖g‖q, f ∈ Lp, g ∈ Lq. (14)

There is of course the convention that 1/∞ has to be interpreted as zero.

It is interesting to look at the unit balls of R2, endowed with the discrete `p-norm,
with p ranging from p = 1 (most internal) to p large forming the outer boundary.

For the sake of completeness let us describe the situation in the form of a proposition:

Proposition 7. For any p ∈ [1,∞) the dual space to (B, ‖ · ‖B) =
(
Lp, ‖ · ‖p

)
can be

isometrically identified with
(
Lq, ‖ · ‖q

)
, in the following sense:

Given g ∈ Lq the functional σ = σg ∈ Lp′ is given by

σg(f) :=

∫
f(x)g(x)dx, f ∈ Lp, 1 ≤ p ≤ ∞

and ‖σg‖Lp′ = ‖g‖q. Conversely, for p <∞ every bounded linear functional on
(
Lp, ‖ · ‖p

)
is of this form.

For p =∞ the dual space of
(
L∞, ‖ · ‖∞

)
is strictly larger than

(
L1, ‖ · ‖1

)
.
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3.6 Dual Operators and Annihilators

We first define the concept of dual operators. The mapping assigning to each bounded
linear operator a so-called dual operator, acting on the corresponding dual spaces, in
opposite order, corresponds in terms of linear algebra over R (using V = Rn) to the
mapping A 7→ At (transposition of matrices). In fact:

Any m× n-matrix A maps Rn into Rm. The corresponding dual spaces are obviously
the linear mappings from Rm resp. Rn into R, which are given by 1×m (resp. n) matrices,
i.e. row-vectors of corresponding length. On those row vectors the transpose matrix is
acting (from the right) by matrix multiplication: T ′ is thus the mapping 13 Rm → Rn

(viewed as row vectors), with y 7→ y ∗At.
In the reality of normed resp. Banach spaces one may thus expect that any bounded

linear mapping is inducing a “corresponding” dual mapping (going between dual spaces,
but in the opposite direction).

Definition 15. Given T ∈ L(V,W) one defines the dual operator T ′ ∈ L(W ∗,V ∗) via

T ′(w∗)(v) = w∗(T (v)), resp. T ′(w∗) = w∗ ◦ T. (15)

The same definition, given in a slightly different symbolic notation makes things look
a bit more natural and we will therefore continue to use the dash-conventions in most
of our discussions about dual operators:

Definition 16. Given T ∈ L(V,W) one defines the dual operator T ′ ∈ L(W ′,V ′) via

T ′(w′)(v) = w′(T (v)), resp. T ′(w′) = w′ ◦ T. (16)

The following lemma, also based on the HB-theorem, shows that the mapping T 7→ T ′

is isometric.

Lemma 9. The mapping T 7→ T ′ is an isometric mapping from L(V,W) to L(W ′,V ′).

Proof. First of all we show that |‖T ′|‖ ≤ |‖T |‖ , both norms taken in the respective
operator norm. By definition we have estimate that action of T ′ on some element w′ ∈
W ′ with ‖w′‖W ′ ≤ 1. For this we have then for any v ∈ V with ‖v‖V ≤:

|T ′(w′)(v)| = |w′(Tv)| ≤ ‖w′‖W ′|‖T |‖ ‖v‖V ≤ |‖T |‖ .

On the other hand we have (by the definition of the operator norm)

|‖T ′|‖ = sup
‖w′‖W ′≤1

‖T ′(w′)‖V ′ .

which equals (written out in detail) the expression

sup
‖w′‖W ′≤1

sup
‖v‖V ≤1

|w′(Tv)|

13Unfortunately there is a conflict of symbols between MATLAB, where A′ denotes the transpose

conjugate matrix, i.e. A
t
, while the transpose matrix is obtained but the inline command A.′
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but be changing the order of the sup one has

sup
‖v‖V ≤1

sup
‖w′‖W ′≤1

|w′(Tv)|.

By the HB-Theorem the inner sup in this order equals ‖Tv‖W and hence we find that

|‖T ′|‖ = sup
‖v‖V ≤1

‖T (v)‖W = |‖T |‖ .

Lemma 10. If T is an isometric isomorphism in L(V,W) then T ′ is an isometric14

mapping in L(W ′,V ′).

Proof. Given w′ ∈ W′ with ‖w′‖W′ = 1 we have to show that ‖T ′w′‖W′ = 1. So we
take a look at

‖T ′w′‖V′ = sup
‖v‖V≤1

|T ′w′(v)| = sup‖v‖V≤1|w′(T ′v)| = sup‖Tv‖V≤1|w′(Tv)| = sup‖u‖V≤1|w′(u)|.

The last step is justified by the surjectivity assumption on T . Finally the last term equals
‖w′‖W′ = 1, as claimed.

I have not checked whether in each case on can derive that T ′ is an
isometric isomorphism as well. Probably it is!

Next we are going to verify what the adjoint resp. dual operator of some linear
operator is, resp. when a given linear operator on a Hilbert space is self-adjoint (i.e.
T ∗ = T ).

CONVENTION Since the mapping (x′,x)→ x′(x) from V′×V to the field R (or
C) is obviously a bilinear mapping, like the ordinary scalar product on Rn, which maps
(−→x ,−→y ) to the real number 〈−→x ,−→y 〉 :=

∑n
k=1 xkyk it is customary in functional analysis

to also use the following alternative symbolic description for the duality of spaces

〈v,v′〉V×V′ := 〈v,v′〉 := v′(v).

Given a nonempty set M ⊆ V resp. a non-empty set N ⊆ V′ we define their
annihilators as follows

For a normed space (V, ‖ · ‖) with dual space V′

M⊥ := {v′ ∈ V′ | 〈v,v′〉 = 0 ∀v ∈M} (17)

⊥N := {v ∈ V | 〈v,v′〉 = 0 ∀v′ ∈ N} (18)

Theorem 11. • The two sets M⊥ and ⊥N defined above are closed spaces;

• for M 6= ∅ one has ⊥(M⊥) or ⊥(M⊥) = [M ], the closed linear span of M in
(V, ‖ · ‖). In particular ⊥(M⊥) = M for closed subspaces of V;

• For T ∈ L(V,W)

R(T )⊥ = N(T ′) and R(T ) =⊥ N(T ′).

if R(T ) is closed, then R(T ) =⊥ N(T ′).

14Obviously isometric operators have norm 1, but the converse is not true, therefore the claim of this
lemma is not trivial!
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3.7 Examples of dual and adjoint operators

Remark 5. Given a multiplication operator with some measurable function h, acting on
H = L2(Rd), we write Mh : f 7→ h · f . Then T ∗ = Mh̄. Consequently we find: Mh is
self-adjoint if (and only if!) h is a real-valued function.

Another nice example are convolution operators. For g ∈ L1(Rd) (it is enough
to consider g ∈ Cc(Rd)) one has: f 7→ g ∗ f defines a bounded linear operator on(
L2(Rd), ‖ · ‖2

)
, and in fact

|‖T |‖2 = sup
z∈Rb

|̂h(z)| ≤ ‖g‖1.

I this case it is easy to find out that T ∗ is another convolution operator, namely using
the (convolution) kernel

g∗(t) = g(−t), t ∈ Rd

Proof. Using the standard scalar product for L2(Rd) one has

〈Mhf, g〉 =

∫
Rd

h(t)f(t)g(t)dt

∫
Rd

f(t)g(t) · h(t)dt = 〈f,Mhg〉.

In order to illustrate this abstract concept let us give a couple of concrete examples:
First we define a family of isometric dilation operators on

(
C0(Rd), ‖ · ‖∞

)
:

Definition 17. Dilation operators on
(
C0(Rd), ‖ · ‖∞

)
are defined by

Dρf(z) = f(ρ · z), ρ 6= 0, z ∈ Rd. (19)

It is easy to verify that

‖Dρf‖∞ = ‖f‖∞ and Dρ(f · g) = Dρ(f) ·Dρ(g) (20)

The compatibility of dilation (as defined above) with pointwise multiplication can be ex-
pressed by saying that (Dρ)ρ>0 is a group of isometric automorphisms of the (pointwise)
Banach algebra

(
C0(Rd), ‖ · ‖∞

)
, with the following composition rule

Dρ1 ◦Dρ2 = Dρ1·ρ2 = Dρ2 ◦Dρ1 and consequently Dρ
−1 = D1/ρ . (21)

We (re)call the dual space to the Banach space the space of bounded measures (this
is justified by another version of the Riesz representation theorem): (Mb(Rd), ‖ · ‖Mb

) :=(
C ′0(Rd), ‖ · ‖C′0

)
.

The motivation for this definition is the fact, that any bounded (and strictly speaking
regular Borel) measure µ in the sense of measure theory (cf. real analysis courses) is
defining a linear functional σ ∈Mb(Rd) via:

σ(h) :=

∫
Rd

h(t)dµ(t), h ∈ C0(Rd); (22)

in conjunction with a classical theorem that any bounded and linear functional on(
C0(Rd), ‖ · ‖∞

)
is given in such a way. By turning this observation into a definition
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we have a simple approach to integration theory avoiding the cumbersome technicalities
of measure theory (but using general functional analytic arguments instead!).

Next we identify the dual operator for a given operator Dρ, now obviously acting on
Mb(Rd). We will call it the mass preserving dilation operator (stretching15).

Definition 18.

Stρ := Dρ
′, i.e. [Stρ(µ)](f) := µ(Dρf), ρ 6= 0, f ∈ C0(Rd).

In order to see what this new (dual) dilation is doing on measures we check the action
on point measures. Recall that the so-called Dirac Deltas δx : x 7→ f(x) is clearly among
the bounded linear functionals on C0(Rd), with ‖δx‖Mb

= 1,∀x ∈ Rd.

Lemma 11.
Stρδx = δρx, ρ 6= 0, x ∈ Rd.

Proof.
(Stρδx)(f) := δx(Dρf) = Dρf(x) = f(ρx) = δρx(f).

Obviously the single “point mass” concentrated at x is just moved to the dilated
position ρx, without changing the amplitude. On can show (no details given here), that
even for general measures (and with a suitable definition of the support of a measure
(supp(µ)) one has

supp(Stρµ) = ρ · supp(µ), ρ 6= 0, µ ∈Mb(Rd). (23)

duplicate result next:?

Lemma 12. Assume that a bounded net (Tα) which is strongly convergent to T0 on
(V, ‖ · ‖). Then (T ′α(w′))α∈I is w∗-convergent to T0(w′) for every w′ ∈W′.

Proof.
T ′α(w′)(v) = w′(Tαv) → w′(T0v) = T ′0(w′)(v),

the convergence following from the assumption about the net of operators (strong con-
vergence) plus the continuity of the linear functional w′ on (W , ‖ · ‖W ).

The example of translation operators shows that one cannot expect norm convergence
of Tα(w′) to T0(w′).

Another question arises naturally: Can it happen that the w∗- and the weak topology
coincide for non-reflexive (dual) Banach spaces, but this is excluded, since their duals
can be determined this statement should go elsewhere.

So there was a natural question: Can one show for certain sequences or nets that
they are w∗-convergent, but not weakly convergent. Obviously one has to look at this
question in some dual space of a non-reflexive Banach space. The most natural choice
to think of is `∞ =

(
`1, ‖ · ‖1

)′
. Clearly 1 is not in the norm closure of the linear

span of the unit vectors (in fact it is clear that their closure is just
(
c0, ‖ · ‖∞

)
). Since

15In German: Stauch und Streckungsoperator
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w∗-convergence in `∞ is just coordinate-wise convergence it is clear that the sequence
yn := [1, 1, . . . 1, 0, 0 . . . ] =

∑n
k=1 ek is w∗-convergent to 1. In fact, one can make the

same statement for the family yF =
∑

k∈F ek where F is running through the (directed)
set of finite subsets of the index set N (this setting applies to `∞(I), for general index
sets in the same way!).

Now we want to explain that this sequence (or the corresponding net) is not weakly
convergent. Since the w∗-limit is already uniquely determined we do not have to discuss
the potential logical possibility that it might be convergent but to a different limit. In
order to fulfill the claim it is enough to find at least one linear functional σ ∈

(
`∞, ‖ · ‖∞

)′
such that σ(yn) does not converge to σ(1).

Such a functional can be obtained via Hahn-Banach. We take the zero-functional on
c0, and add the one dimensional subspace generated by 1. The resulting subspace of(
`∞, ‖ · ‖∞

)
is then the set of all convergent sequences, with limn→∞ = α ∈ C, because

they are exactly of the form y = α1 + z with z ∈ c0. On this space obviously y 7→ α
is a bounded linear functional of (functional) norm 1, which by Hahn Banach can be
extended to all of `∞. Since σ vanishes (i.e. is zero) on c0 we have σ(yn) = 0 for all
n ≥ 1 while in contrast obviously σ(1) = 1 6= 0. This completes the argument.

3.8 Consequences of the Big Theorems

The theorems above have a number of important consequences. The Open Mapping
Theorem and Banach’s Theorem (establishing the homomorphism theorem) establish
the principle: If a mapping is bijective (i.e. invertible as a mapping from sets to sets) and
bounded, linear (i.e. a morphism in the category of Banach spaces, preserving linearity
and convergence) then it is also invertible in this category (the inverse is automatically
linear - as we know from linear algebra courses - and continuous, as these theorems tell
us.

The Closed Graph Theorem typically applies in a somewhat different situation. One
has a linear mapping, and wants to establish continuity. If there is some more coarse
topology on some ambient, i.e. larger topological vector space (still with the Hausdorff
property) then one can show that the identification task necessary to establish the closed
graph property can be carried out successfully. Hence, assuming that the mapping is
between Banach spaces one gets continuity for free.

Typical applications where such a situation occurs are BK-spaces. Think e.g. of a
pointwise multiplier from one sequence space (say `r(N) to another one, say `s(N)),
mapping one of the spaces into the other (for fixed values s, r ≥ 1).

It is trivial, that each of the norms has the property that convergence in the norm
of the Banach space of sequences implies pointwise convergence (for any p ≥ 1 one has
|xk| ≤ ‖x‖p!) and also clearly any pointwise multiplication operator x 7→ z, with zk =
xkmk (for some multiplier sequence (mk)k∈N is continuous with respect to coordinate
convergence (if |xnk−uk| → 0 for n→∞ for each k ∈ N obviously also |(xnk−uk)mk| → 0
for n→∞!). Hence it maps spaces (more generally so-called BK-spaces) into each other
if and only if the multiplication operator defines a bounded linear operator between the
two Banach spaces.

As a trivial special case one has (choosing the sequence mk ≡ 1): it Any embedding
of BK-spaces is automatically continuous, and consequently the norm on such a space
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is uniquely determined, up to equivalence.
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4 Banach Algebras and Banach Modules

Many of the Banach spaces which we meet have an addition structure. Let us therefore
, first of all, introduce the concept of a Banach algebra.

Many of the Banach spaces we encounter in functional analysis also have various
additional structures. The most important one will be Banach algebras (with some kind
of internal multiplication) and Banach modules, something on which such a Banach
algebra can act, very much like scalars act on a general vector space.

Definition 19. A Banach space (A, ‖ · ‖A) which is endowed with an additional internal
“multiplication”, i.e. some bilinear mapping (a, b)→ a • b, is called a Banach algebra if
one has the norm estimate

‖a • b‖A ≤ ‖a‖A‖b‖A, ∀a, b ∈ A. (24)

A Banach algebra will be called commutative if

a1 • a2 = a2 • a1, ∀a1, a2 ∈ A.

Of course mappings between two Banach algebras respecting this additional structure
are the appropriate homomorphisms:

Definition 20. A bounded linear operator from (B1, ‖ · ‖(1)) to (B2, ‖ · ‖(2)) is called a
Banach algebra homomorphism if products in B1 are mapped into product in B2, resp.

T (a • b) = T (a) ? T (b), ∀a,b ∈ B1. (25)

It is called a multiplicative linear functional if B2 = K. It is called a Banach algebra
isomorphism if it is a bijective BA-homomorphism16.

Definition 21. A Banach space (B, ‖ · ‖B) is called a Banach module over the Banach
algebra (A, ‖ · ‖A) if there is a bilinear mapping (a, b)→ a ◦ b if the two multiplications
are compatible, i.e. if the following associativity result is valid

(a1 • a2) ◦ b = a1 ◦ (a2 ◦ b), ∀a1, a2 ∈ A,b ∈ B. (26)

and furthermore the norm estimate is valid:

‖a ◦ b‖B ≤ ‖a‖A‖b‖B, ∀a ∈ A,b ∈ B. (27)

More precisely, a Banach module satisfying property 26 above is called a left Banach
module over A while it is called a right Banach module over A if instead one has the
following variant of the associativity law (“as if multiplication took place from the right”
!)

A simple finite-dimensional example of this situation is the following one (just to
give an idea). Let B be the set of all complex m× n-matrices, and A the set of all
m×m-matrices, with the module action being defined by A • B := At ∗ B (matrix

16This is justified because in that case also the inverse mapping is automatically a Banach algebra
homomorphism!
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multiplication with the transpose matrix from the left). Since (A1 ∗ A2)t = At
1 ∗ At

2

this is a (!) right module action, although matrix multiplication is done from the left
(otherwise it would not make sense). So it is the form of the associative law which
decides, not the position of the multiplication symbol!17

(a1 • a2) ◦ b = a2 ◦ (a1 ◦ b), ∀a1, a2 ∈ A,b ∈ B. (28)

Of course there is only a difference if the Banach algebra is non-commutative.
The symbols used in the context should not matter, e.g. ◦, •, ·, ?, ∗ or similar, and

most of the time the assumption refbanmoddef02 implies that it is convenient to use
the same symbol for both the internal and external action. Examples are pointwise
multiplication (denoted by ·, convolution denoted by ∗, or composition of operators
with ◦ as “multiplication”).

The concepts of Banach module homomorphisms and of Banach module isomorphism
is defined in a completely analogous way (cf. above).

We have immediately a couple of such Banach algebras.
We have already a number of examples:

Theorem 12.
(
Cb(Rd), ‖ · ‖∞

)
or
(
C0(Rd), ‖ · ‖∞

)
are Banach algebras with respect to

pointwise multiplication.

Proof. Of course formally the pointwise product is given by the standard convention
about pointwise multiplication. The pointwise product f · g is given pointwise via (f ·
g)(x) := f(x)g(x), x ∈ Rd. It is clear (from analysis) that f · g is continuous. For any
x ∈ Rd one has

|(f · g)(x)| = |f(x)||g(x)| ≤ ‖f‖∞‖g‖∞,
hence the smallest upper bound ‖f · g‖∞ will satisfy the required estimate

‖f · g‖∞ ≤ ‖f‖∞‖g‖∞, ∀f, g ∈ Cb(Rd). (29)

As an exercise we suggest to investigate the question, whether Lip (α) is a Banach
algebra.

The other prototypical example of non-commutative Banach algebras are Banach al-
gebras of bounded linear operators on a fixed Banach space (B, ‖ · ‖B). As a special case
we have of course the algebra of n× n-matrices with respect to matrix multiplication.
Just as an exercise on terminology let us formulate the following

Lemma 13. Let V be an n-dimensional normed vector space over C, and let L(V ) be the
algebra of bounded linear operators from V into itself, with composition as multiplication
and the operator norm

|‖T |‖ := sup
‖v‖V≤1

‖T (v)‖V. (30)

is isomorphic to the algebra of n× n-matrices, with the operator norm over Cn, which
can be computed as the maximal singular value of the corresponding matrix A, resp.
σ1 =

√
max(eig(A′ ∗A)).

17One could also multiply with the adjoint matrix (transpose conjugate) from the left, but this is a
bit in conflict with the notations for dual operators and therefore we avoid this as an example here.
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Theorem 13. For any Banach space B the space L(B) of all bounded linear operators
on (B, ‖ · ‖B), endowed with the operator norm and ordinary composition is a Banach
algebra. In fact, (B, ‖ · ‖B) is a Banach module over (L(B), |‖ · |‖ ).

Proof. It is obvious that L(B) is a linear space with the usual addition and scalar
multiplication, and it is easy to verify that T 7→ |‖T |‖ is actually a norm on L(B). It
remains to check that any CS (Tn) in (L(B), |‖ · |‖ ) is also convergent to some T0 ∈
L(B). So we note that for any given ε > 0 there exists n0 such that m,n ≥ n0 implies
|‖Tn − Tm|‖ ≤ ε > 0.

For this purpose consider the sequence pointwise, i.e. fix any b ∈ B and look at the
sequence (Tnb), which is obviously a CS in (B, ‖ · ‖B), because

‖Tnb− Tmb‖B ≤ |‖Tn − Tm|‖ ‖b‖B.

For fixed n ≥ n0 (e.g. n = n0) we find that the completeness of the space (B, ‖ · ‖B)
implies that there exists some limit b′ ∈ B of the sequence (Tnb)n≥1. Because the limit
is uniquely determined by b and the given sequence of operators we can define a new
mapping T0 : b 7→ b′, or in other words, introduce the notation T0(b) := b′ (as described
above). It remains to be shown (Exercise) that T0 is in fact a linear mapping. Since we
have ‖Tm(b)−Tn(b)‖ ≤ ε > 0 for all m ≥ n0 it follows that b′ = limm→∞ Tm(b) satisfies

‖b′ − Tn(b)‖B ≤ ε,

hence both
‖T0(b)‖ ≤ |‖Tn|‖ ‖b‖B + ε,

i.e. boundedness of T0 with |‖T0|‖ ≤ supn≥n0
|‖Tn|‖ and finally convergence of (Tn) to T0

in the operator norm, since for every b ∈ B with ‖b‖B ≤ 1 on has

‖T0(b)− Tm(b)‖B ≤ ε > 0, ∀m ≥ n0,

or equivalently
|‖T0 − Tm|‖ ≤ ε > 0, ∀m ≥ n0.

Remark 6. Observe that we have used the fact that a Cauchy-Sequence in a metric
space, here the CS (Tn) in (B, ‖ · ‖B) is bounded, hence supn≥1 |‖Tn|‖ <∞.

4.1 Inversion in Banach Algebras

Many Banach algebras (such as
(
C0(Rd), ‖ · ‖∞

)
) do not contain a unit element, but

only an approximate unity (approximate identity)

Definition 22. Let (A, ‖ · ‖A) be a Banach algebra (typically without unit element).
A sequence, or in fact a directed family (! net!) (eα)α∈I is a (left) approximate unit for
(A, ‖ · ‖A) if for all a ∈ A one has

lim
α→∞

‖eα • a− a‖A = 0. (31)

The Banach algebra (A, ‖ · ‖A) has a bounded approx. unit if such a family can be chosen
to be bounded in the A-norm.
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Whenever there is a bounded family which is a candidate for being an approximate
unit it is enough to test it on a dense subspace, in fact, it is enough to test the action
on a total subset of (A, ‖ · ‖A).

Lemma 14. Assume that a bounded net (eα)α∈I satisfies the relation

lim
α

eα • x = x, for x ∈M,

where M is a total subset, then it is an approximate unit, i.e. equation (31) is valid.

Proof. First we argue that the relation limα eα • x = x is valid for every x in the linear
span of M . This is checked easily (!exercise) using induction on the length of the linear
combination.

So it remains to proof the transition to the closure of the linear span (which by
assumption is all of A). Because we need the uniform bound on the family let us write
C := supα ‖eα‖A. Obviously we may assume without loss of generality that C ≥ 1 (why?
find the easy argument for this claim).

Let now ε > 0 be given and a ∈ A be given. Then there exists x ∈ span(M) with
‖a− x‖A ≤ ε/3C. Choosing now α0 such that ‖eα • x− x‖A ≤ ε/3 for α � α0, we end
up with the estimate

‖eα • a− a‖A ≤ ‖eα • (a− x)‖A + ‖eα • x− x‖A + ‖x− a‖A. (32)

Obviously the first term can be estimated, for any α � α0 via

‖eα • (a− x)‖A ≤ ‖eα‖A · ‖a− x‖A ≤ C · ε/3C = ε/3.

while the second term is getting ≤ ε/3 for α � α1. The last term is even smaller than
the first one.

Choosing now some index α3 such that α3 � α0 and α2 � α1 it is clear that the
required estimate is valid for this general a ∈ A as long as α � α3.

Sometimes it is also possible to “add” a unit element, i.e. to formally adjoin a unit
element (A, ‖ · ‖A), which typically consists in adding a copy of the unit element (and
its scalar multiples), or in other words form the direct sum of A and C, with suitable
multiplication and norm, very much similar to the construction of C from R, using pairs
of real numbers and define multiplication appropriately. We do not go into details here
(it is one of the exercises for the course).

However, Banach algebras having a unit element e with

e • a = a = a • e

are of special interest. Within such Banach algebras invertibility can be discussed, and in
fact, quite general facts about invertibility can be derived using the idea of the so-called
Neumann series18.

18Carl Neumann, not the famous John von Neumann, who was involved in the invention of computers

31



Definition 23. Let (A, ‖ · ‖A) be Banach algebra with (multiplicative) unit element e,
with ‖e‖A = 1 (does not follow from the axioms). Then every element a with ‖a−e‖A :=
q < 1 is an invertible element in (A, ‖ · ‖A), and moreover

‖a−1‖A ≤
1

1− q
.

Proof. Set y := e− a. Then it is clear that the Neumann series

b :=
∞∑
k=0

y•k

is absolutely convergent. Here we us the compound exponent •k to express the power k
with respect to the algebra multiplication and make use of the obvious estimate

‖y•k‖A ≤ ‖y‖kA, ∀ k ∈ N. (33)

By assumption ‖y‖A = q < 1 hence one obtains absolute convergence of the series in
(A, ‖ · ‖A) and ‖b‖A ≤

∑∞
k=0 q

k = 1
q
. It is then easy to check that

a • b = (e− y) •
∞∑
k=0

y•k =
∞∑
k=0

y•k −
∞∑
k=1

y•k = e,

i.e. that b = a−1 in (A, ‖ · ‖A).

The proof also indicates how well the partial sums approximate the limit. Just con-
sider

bn :=
n∑
k=0

y•k,

then

‖b− bn‖A ≤
∞∑

k=n+1

‖y•k‖A ≤
∞∑

k=n+1

‖y‖kA ≤
qn+1

1− q
,

indicating at least “linear convergence” (look at a semi-logarithmic description of the
decay rate!).

There is also an easy iterative way of computing bn+1 from bn:

b0 = e , bn+1 := e + ybn.

(please check! ) Idea: instead of adding a new term yk+1 the existing partial sum is
multiplied by y, giving

∑n+1
k=1 y•k which gives back bn+1 by adding the (now missing)

term e (corresponding to the k = 0-term of the sum).
For the convergence of the series above in fact the strong condition ‖y‖A can be

replaced by the much weaker condition

r(y) := lim sup k
√
‖yk‖A < 1 (34)

The number r(y) is called the spectral radius of y ∈ (A, ‖ · ‖A). It is in fact a limit!
( [11], p.61).
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The substructures in a Banach algebra (A, ‖ · ‖A) are either simple subalgebras (i.e.
linear subspaces, which are closed under the multiplication inherited by the big algebra)
and so-called two-sided ideals, which are closed subspaces I ⊆ A with the property that
A • I •A ⊆ I .

The natural quotient can then inherits a unique multiplicative structure, via the
definition if a multiplication of classed, denoted by •q:

[a1]I•q[a2]I := [a1 • a1]I. (35)

Of course the point is to verify (using the two-sided ideal property) to show that this
definition makes sense (i.e. that •q is well-defined) and that the quotient norm is sub-
multiplicative with respect to this norm! (could be an exercise).

A nice application of this (simple but important) principle in matrix analysis is the
following one:

Lemma 15. Assume that A is a diagonal dominant n× n-matrix (real or complex), i.e.
a matrix satisfying

ρ := min1≤j≤n

[
|aj,j| −

∑
k 6=j

|aj,k|

]
> 0.

Then A is invertible.

Proof. In fact, one has to consider the matrix as an operator from (Rn, ‖ · ‖∞) into
itself. Then the corresponding operatornorm of T : x→ A ∗ x is give by the expression
(exercise)

|‖T |‖ = max
1≤j≤n

n∑
k=1

|aj,k|.

Since a diagonal dominant matrix has evidently an invertible diagonal part D we can
look at the matrix B := A ∗D−1, which means that we are multiplying all the rows of
A by the numbers d−1

j = 1/aj,j. Hence B has a diagonal consisting of ones, and thus
the operator norm of Idn −B on (Rn, ‖ · ‖∞) can be estimated by∑

k 6=j

n∑
k=1

|aj,k|/|aj,j| < 1 for 1 ≤ j ≤ n

and hence |‖B|‖ < 1, which allows to apply the Neumann series argument explained
above.

In (numerical) linear algebra courses one can learn that for such matrices Gaussian
elimination without pivoting always works well, because the diagonal dominance can be
shown to be preserved during the Gauss procedure.

4.2 Examples of bounded linear operators

There will be many more of those operators in the future. First a selection of operators
which are isometric (up to some constant), i.e. with the property that T/λ is an isometry,
for a suitably chosen value λ which may depend on the space under consideration.

• translation operators Tzf(x) := f(x− z) on
(
Lp(Rd), ‖ · ‖p

)
;

• dilation operators Stρf(x) = ρ−df(x/ρ), for f ∈ L1(Rd).
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4.3 Banach algebras with convolution

Among the most interesting Banach algebras are the convolution algebras (for many
reasons, to be explained later). Typically one starts with the introduction of the Le-
besgue space

(
L1(Rd), ‖ · ‖1

)
of Lebesgue integrable functions, or more precisely with

the Banach space of equivalence classes of measurable functions, where two functions
which coincide almost everywhere, we write f(x) = g(x)a.e. (almost everywhere) or in
other words where the set where the set {x | f(x) 6= g(x)} is a nullset in the sense of
the Lebesgue measure. Unfortunately this approach requires to study measure theory
and in particular the Lebesgue integral, at the end to understand that

(
L1(Rd), ‖ · ‖1

)
is a Banach space with respect to the (well-defined) norm ‖f‖1 :=

∫
Rd |f(x)|dx, contai-

ning Cc(Rd) as a dense subspace. Also, making use of Fubini’s theorem one finds that(
L1(Rd), ‖ · ‖1

)
is even a commutative Banach algebra, with the multiplication being

the so-called convolution.
Of course, technically speaking one has to show that this is defining a new equivalence

class (which does not depend on the representative of f resp. g), that the procedure is
associative etc. etc..

The classical definition of the convolution of two sequences is modeled after the so-
called Cauchy product of sequences, which arises in a natural way through the pointwise
multiplication of polynomial functions (and if one wants of Laurent series which allow a
finite range of negative powers, of course only for non-zero arguments).

In standard mathematical definition we have for a sequence (ak)
K
k=0 of coefficients of

length K + 1 (the order of the polynomial is the length of this vector) resp. of degree K:

p(z) = pa(z) =
K∑
k=0

akz
k

and the pointwise product of pa(z) with qb(z) equals r(z) = rc(z), with

cn =
∑
k+j=n

akbj =
n∑
k=0

akbn−k =
n∑
j=0

an−jbj; (36)

Clear enough the product polynomial is of degree N = K+J (sum of the degrees of the
factors), as the highest monomial from each term is meeting only the highest term from
the second factor to give the (single) coefficient of zN = zK · zJ .

It is a well known and now obvious fact that the set of polynomials as a commutative
algebra under pointwise multiplication, hence the set of “finite sequences” (meaning
sequences on N0 (natural numbers including zero) with only finitely many non-zero
entries (K describes the position of the highest order term) is closed under the Cauchy
product. We will call this a discrete convolution.

Now it is interesting for us to even put a norm on this algebra, namely the `1-norm:

‖a‖`1 = ‖a‖1 :=
∞∑
k=1

|ak|,

where of course the sum is finite. The following estimate establishes submultiplicativity
of this `1-norm:
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Short proof of the statement in class:

ck =
∞∑
k=0

asbk−s

‖c‖1 =
∞∑
k=0

|ck| =
∞∑
k=0

∣∣∣∣∣
k∑
s=0

asbk−s

∣∣∣∣∣ ≤ by ∆

≤
∞∑
k=0

k∑
s=0

|as||bk−s| = ! important! (37)

=
∞∑
s=0

∞∑
k=s

|as||bk−s| = set j := k − s

=
∞∑
s=0

∞∑
j=0

|as||bj| = (38)

=
∞∑
s=0

|as|
∞∑
j=0

|bj| = ‖a‖1‖b‖1

From (1) to (2): In order to obtain |ap||bq| in (2) (for some fixed p, q ∈ N), take
k = p+ q, s = p in (1).

Similarly one can write the Cauchy product for Laurent sequences, but even for
sequences non-zero at any coordinate k, as long as the sequence (ak)k∈Z is absolutely
summable, i.e. a ∈ `1 or (by definition) ‖a‖`1 :=

∑
k∈Z |ak| <∞.

Since this implies both the convergence of the part with positive and negative powers
for |z| ≤ 1 and |z| ≥ 1 respectively, the overall sum is certainly convergent for any
z ∈ U := {z | |z| = 1}, the unit circle or 1D-torus.

Coming to the domain R or Rd it is therefore natural to ask that (first only)
f, g ∈ L1(Rd) should have a convolution, but it is also possible to convolve two L2(Rd)-
functions, according to the following rule, featuring first the convolution defined in a
pointwise sense 19.

Definition 24.

f∗g(x) :=

∫
Rd

g(x−y)f(y)dy =

∫
Rd

Tyg(x)f(y)dy =

(∫
Rd

Tygf(y)dy

)
(x), f, g ∈ Cc(Rd).

(39)

FOR NOW take the first expression as the definition, later on we will see that also
the second and third expression (vector-valued integral with values in a Banach space)
are meaningful, as limits of Riemannian Sums (which form a Cauchy net!).

It is easy to verify the following properties of convolution (Exercises): Convolution is
commutative (i.e. f ∗g(x) = g∗f(x)) and bilinear ( for example f ∗(g1+g2) = f ∗g1+f ∗g2

as functions!) etc., and even associative, i.e.

f ∗ (g ∗ h) = (f ∗ g) ∗ h,
19We will learn elsewhere about the relevance of the concept of convolution, e.g. for the description

of translation invariant linear systems!
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at least in the sense of classes. We do not claim that the iterated convolution product
exists for a given point x in one case if it works for the other, but this is a minor concern.
Due to the associativity it is justified to just write f ∗ g ∗ h and use the “∗′′ symbol as
a kind of multiplication.

There are different arguments that can be used to verify that convolution makes
sense. First of all let us recall the so-called Cauchy-Schwartz inequality which will be
used to ensure the existence of the convolution in the case that both factors are L2-
functions (in fact classes):

The Cauchy-Schwartz Inequality

|〈f, g〉| ≤
∫
Rd

|f(x)||g(x)|dx ≤ ‖f‖L2‖g‖L2 , ∀f, g,∈ L2(Rd). (40)

From this equality it is easy to derive that

‖f ∗ g‖∞ ≤ ‖f‖2‖g‖2 ∀f, g ∈ L2(Rd). (41)

Proof. Let us first define the FLIP-operator: hX(z) := h(−z). 20

Let us observe that the convolution product can be recast as a scalar product in the
case that the factors are both in L2:

f ∗ g(x) = 〈f, Tx(gX)〉21 (42)

It clearly implies via CS (40):

|f ∗ g(x)| ≤ ‖f‖2‖TxgX‖2 = ‖f‖2‖g‖2, (43)

because obviously g → gX and g → Txg are isometric (in fact unitary) operators on(
L2(Rd), ‖ · ‖2

)
.

WORK in progress: It is also possible to show the submultiplicativity of the L1(Rd)-
norm:

‖f ∗ g‖1 ≤ ‖f‖1‖g‖1 ∀f, g ∈ L1(Rd). (44)

20There is not much uniqueness in the literature in the choice of symbols for this simple and quite
important operation. Think of plotting the graph of a function on a transparency and look at it from
the backside! We follow [15].

21Later on we just write Txg
X.
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5 Different kinds of convergence

It is clear that in a space which is endowed with a metric one has a natural concept of
convergence and of Cauchy sequence, hence of density, totalness, separability, etc.., but
for a given space there are important other possible ways of convergence, in particular
for spaces of operators or functionals. For them (as for general functions over general
sets) the concept of pointwise convergence is of great importance. Since in this case the
topology may perhaps not be described by just looking at sequences (and even if it was
like that, in many situations naturally more general forms of convergence appear) we have
to talk about the more general concept of Moore-Smith sequences or (better actually)
nets, which may be convergent or Cauchy nets etc. and allow to describe topological
facts more properly.

As a kind of training let us recall that important topological concepts can be cha-
racterized in many cases making use of sequences only. Thus we have in a metric space
(hence in any normed space), correct statements of the form:

• A point v0 ∈ V belongs to the closure of a set M ⊆ V if and only if there is a
sequence (vk)

∞
k=1 in V such that v0 = limk→∞vk.

• A mapping between metric spaces is continuous if and only if convergent sequences
are mapped into convergent sequences (with the correct/natural limit), i.e. if and
only if

xk → x0 ⇒ f(xk)→ f(x0) for k →∞.

• A normed space is complete if every Cauchy-sequence is convergent.

• Any Cauchy-sequence is bounded.

Where in analysis have we seen already “generalized concepts of convergence”? Let
us quickly recall a few situations:

• x0 = limk→∞ xk;

• limx→0+ f(x) = a;

• limx→∞ ex = +∞.

•
∑

(k,n)∈Z×Z cn,k = b;

• The Riemannian sums converge to
∫ b
a
f(x)dx for every f ∈ C([a, b]);

There are various “general principles” connected with the use of NETS versus SE-
QUENCES. On the one hand topology (in its most general setting) enforces the use
of nets, simply because it is NOT sufficient to consider sequences in order to reach a
point in the closure of a set M (the intersection of all closed subsets containing M ,
resp. the smallest closed subset of the ambient topological space X containing M). This
is in particular the case of the topology does not allow for a countable basis of the
neighborhood-system (of the zero-element in a vector space). In this case it is at least
plausible that a countable family (any sequence contains only countably many elements)
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may not suffice to “reach the limit”, while nets (typically with a much larger, but less
sorted, and certainly not totally ordered, index set) will do the job.

For this we need the definition of an directed resp. oriented set is required. At first
sight it looks similar to that of a semi-ordering, but there are differences, as we see:

Think about this: What should be the concept of a subnet of a given net (xα)α∈I . Of
course this concept should a natural generalization of a subsequence. In other words, if
we consider an ordinary sequence (xk)

∞
k=1 as a net (which we can do!), then the usual

subsequences (xkn)∞n=1 should be special cases of the (still to be defined) concept of a
subnet (see later/below).

The answer can be found in Kelley’s classical book on topology ( [12]), p.70.
Exercise: Let I be any countable index set (e.g. Zn, n ≥ 1), and assume that the

net
∑

i∈F xi is convergent in a normed space (V, ‖ · ‖), with limit s ∈ V. Then for any
enumeration π : N→ I the series

∑∞
k=1xπ(k) is (unconditionally) convergent.

Definition 25. A subnet of a given net (xα)α∈I is obtained by means of a cofinal mapping
from another index set J . By this we mean the following situation. We assume that

• I is directed by means of some orientation �;

• The index set J is endowed with another orientation, let us write w
(for the sake of distinction);

• a mapping φ from J to I is called cofinal 22 if for every α0 ∈ I there exists some
β0 ∈ J such that

β w β0 ⇒ φ(β) � α0. (45)

In such a situation the mapping φ : J → X, given by β → xφ(β) is called a subnet
of the original net (xα). Instead of writing (xφ(β))β∈J we simple write (xβ)β∈J .

There are various alternative ways of looking at the concept of subnets. One of them
(compatible with the view on subsequences) is the idea that one has a subnet, if the
labels (the indices β attached to elements) are attached to the elements of the !set!
which is generated by the net (xα), i.e. a mapping from the directed set J into the set
{xα, α ∈ I} ⊂ X (which is of course different from indexed family (xα), e.g. because in
(xα)α∈I repetitions are possible and such nets are not just subsets of X). So the only
requirement is that the indexing using the β′s should reach “arbitrary strong” values
within the set.

I was doing a plot with blue ( = old, original) labels from I and red (= new, J-labels).
In this context we have the following interesting situation, which does not have any

analogue in the case of a subsequence (except a trivial one): It is possible to have a
situation that two nets (xα)α∈I and (xβ)β∈I are subnets of each other without being
equal (in a trivial sense).

Note that in many cases the mapping φ used to generate a subnet is preserving
“orientation”, i.e. has a kind of monotonicity property, as we are used to have it in the
case of subsequences. However we mention explicitly that this is not required here (in
order to obtain stronger statements!). If such a monotonicity is available it is of course
enough to assume that for every α0 there exists some β0 such that φ(β0

22Warning, this terminology is not at all standard, but hopefully intuitive!
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5.0.1 Examples of subnets

The following cases are (hopefully) obvious:

1. Any subsequence of a given sequence is also a subnet (of both sequences are con-
sidered as nets, mapping (N,≥) to the given set X; Both I, J are the set N of
natural numbers, with the natural (!total) ordering. The mapping φ is what is
usually described by sub-indexing, i.e. the mapping n 7→ kn, describing the sub-
sequence. In fact it is clear (by induction) that kn ≥ n because by the general
convention about kn1 > kn2 , or expressed differently: φ is assumed to be a strictly
increasing (monotonous) function from N to N.

2. The x1, x4, x3, x5, x6, . . . is a subnet, but NOT a subsequence (because monotoni-
city is violated (but it is not requested for subnets);

3. The sequence x1, x2, x2, x3, x3, x3, x4 . . . is again not a subsequence, but it is a
subnet. In other words, repetitions are allowed in the context of subnets!

4. x1, x2, x1, x3, x1, x4, x1, x5 . . . is not! a subnet of the sequence (xk)
∞
k=1 because it

is not cofinal (over and over again there are elements with the fixed index 1 are
occurring!

5. any permutation of a sequence, i.e. a new sequence generated from a given sequence
(xk)

∞
k=1 via some bijection π : N→ N, leading to a new sequence (hence net) (xπ(n))

can be considered as a subnet. In particular one can argue (mostly for the sake of
training of ideas) that the stability of convergence behavior of a sequence under
permutation of the index set is a consequence of the fact that subnets of convergent
nets are convergent and have the same limit. (see Exercises).

Lemma 16. Let (vβ)β∈J := (vφ(β))β∈J be a subnet of a Cauchy-net (vα)α∈I .
Then the following statements are valid:

• Any tail, i.e. the subfamily of elements with indices α � α0 is a subnet;

• (vβ)β∈J is also a Cauchy-net;

• if (vβ)β∈J is convergent, then so is (vα)α∈I .

Proof. For the first claim check the definition. One just has to take J := {α ∈ I, α � α0}
and φ(α) = α. The main conditions for subnets can be verified (try it yourself, it was
done in the course) by making use of what has been called the majorization property for
nets.

Next we show that the convergence of a subnet of a CN (Cauchy net) implies the
convergence of the net itself. This results isolates nicely the logical basis for such an
argument (the corresponding condition for CS is done in the exercises) and also exhibits
that the very weak request made in the definition of a subnet (without any monotonicity
requirement) is still strong enough to verify (technically) this result:

Given ε > 0 we can find α0 such that

‖vα − vα′‖A < ε for α, α′ � α0.
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Choosing now (according to the definition of subnet, using the cofinality condition) β0

such that for β w β0 the elements vβ := vφ(β) are such that φ(β) � α0 it is clear that
the “tail” of the subnet (the elements having labels stronger than β0 in the subnet) are
part of the a tail

Let us formalize the term “tail” (non-standard, no good reference, again: hopefully
intuitive):

Definition 26. Given a net (vα)α∈I in some set V we call the family (vα)α�α0 the tail
of the net, starting at α0 ∈ I.

Remark 7. In many cases (e.g. subsequences) the mapping φ is monotonous

Similarities and Differences: Sequences and Nets
In many cases the use of nets allows to consider just more general convergence struc-

tures (such as Riemannian sums with general subdivision). It is remarkable that com-
pleteness with respect to sequences (the usual CS-criterion) is also implying convergence
of Cauchy-nets (due to the fact that the ε-balls with radius 1/n or 2−n (for example)
form a countable basis of the neighborhood system of each element v ∈ (V, ‖ · ‖).

5.0.2 Similarities

• all Cauchy nets are convergent if and only if the space is complete;

• a subnet is convergent if only the net itself is convergent;

• for Cauchy-nets the converse is true;

• continuity/boundedness of linear operators can be characterized by the preserva-
tion of convergence of nets;

5.0.3 Dissimilarities

• a Cauchy-net, even a convergent net, does not have to be bounded ;

• two nets can be mutually subnets of each other without being equal;

• a subnet can be obtained from a given sequence by arbitrary permutation of the
element and finite repetition of each of the elements;

Lemma 17. A sequence (yn) is a subnet of a given sequence (xk)
∞
k=1 if and only if each

of the elements from the original sequence (xk)
∞
k=1 is chosen (if at all) at most finitely

many times.

Proof. Just the starting point. A sequence is obviously just a net with a specific index
set N, oriented towards ∞, i.e. with the natural order (satisfying the properties of an
oriented set, with the majorization being just the usual game: Given n1, n2 ∈ N it is
clear that n0 = max(n1, n2) satisfies n0 ≥ n1 and n0 ≥ n2.

Now one has to verify that the request coming from the subnet definition are (logi-
cally/practically) equivalent to the situation described in the lemma.

For now this is given as an exercise.
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5.1 Cauchy nets in Banach Spaces II

this part was typed previously, using different conventions

Definition 27. A net {fα}α∈A in a Banach space X is said to be a Cauchy net if for
every ε > 0, there is a α0 in A such that α1, α2 � α0 implies ||fα1 − fα2|| < ε.

Proposition 8. In a Banach space each Cauchy net is convergent. Consequently a
normed space is complete if and only if every Cauchy net is convergent23

Proof. Let {fα}α∈A be a Cauchy net in the Banach space X . Choose α1 such that
α ≥ α1 implies ||fα − fα1|| < 1. Having chosen {αk}nk=1 in A, choose αn+1 ≥ αn such
that α ≥ αn+1 implies

||fα − fαn+1 || <
1

n+ 1
.

The sequence {fαn}∞n=1 is clearly Cauchy and, since H is complete, there exists f in H
such that limn→∞ fαn = f .
It remains to prove that limα∈A fα = f . Given ε > 0, choose n such that 1

n
< ε

2
and

‖fαn − f‖ < ε
2
. Then for α ≥ αn we have

||fα − f || ≤ ||fα − fαn||+ ||fαn − f || <
1

n
+
ε

2
< ε.

A similar argument can be used (by choosing ε = 2n) can be used to prove that a
normed space with the property that every absolutely convergent series is also (norm)
convergent is enough to show that the Cauchy-sequences exist. (this is the way how the
proof was given in the course on Thursday, 24th of October).

Definition 28. Let {fα}α∈A be a set of vectors in the Banach space X . Let F = {F ⊂
A : F finite}. If we define F1 ≤ F2 for F1 ⊂ F2, then F is a directed set. For each F
in F , let gF =

∑
α∈F

fα. If the net {gF}F∈F converges to some g in H , then the series∑
α∈A

fα is said to be (unconditionally) convergent and we write g =
∑
α∈A

fα.

Proposition 9. If {fα}α∈A is a set of vectors in the Banach space X such that
∑
α∈A
||fα||

converges in the real line R, then
∑
α∈A

fα converges in X .

Proof. It suffices to show, in the notation of Definition 28, that the net {gF}F∈F is
Cauchy. Since

∑
α∈A
||fα|| converges, for ε > 0, there exists F0 in F such that F ≥ F0

implies ∑
α∈F

||fα|| −
∑
α∈F0

||fα|| < ε.

23For the practical use of Banach spaces this is the more convenient characterization of completeness,
while for the verification of completeness it is of course easier to just verify the convergence of Cauchy
nets or even better, the convergence of absolutely convergent series.
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Thus for F1, F2 ≥ F0 we have

||gF1 − gF2|| =

∥∥∥∥∥∑
α∈F1

fα −
∑
α∈F2

fα

∥∥∥∥∥
=

∥∥∥∥∥∥
∑

α∈F1\F2

fα −
∑

α∈F2\F1

fα

∥∥∥∥∥∥
≤

∑
α∈F1\F2

||fα||+
∑

α∈F2\F1

||fα||

≤
∑

α∈F1∪F2

||fα|| −
∑
α∈F0

||fα|| < ε.

Therefore, {gF}F∈F is Cauchy and
∑
α∈A

fα converges by definition.

Corollary 6. A normed linear space X is a Banach space if and only if for every

sequence {fn}∞n=1 of vectors in X the condition
∞∑
n=1

||fn|| < ∞ implies the convergence

of
∞∑
n=1

fn.

Proof. If X is a Banach space, then the conclusion follows from the preceding propo-
sition. Therefore, assume that {gn}∞n=1 is a Cauchy sequence in a normed linear space
X in which the series hypothesis is valid. Then we may choose a subsequence {gnk

}∞k=1

such that
∞∑
k=1

||gnk+1
− gnk

|| < ∞ as follows: Choose n1 such that for i, j ≥ n1 we have

||gi − gj|| < 1; having chosen {nk}Nk=1 choose nN+1 > nN such that i, j > nN+1 implies

||gi − gj|| < 2−N . If we set fk = gnk
− gnk−1

for k > 1 and f1 = gn1 , then
∞∑
k=1

||fk|| <∞,

and the hypothesis implies that the series
∞∑
k=1

fk converges. It follows from the definiti-

on of convergence that the sequence {gnk
}∞k=1 converges in X and hence so also does

{gn}∞n=1. Thus X is complete and hence a Banach space.

Theorem 14. Let (B, ‖ · ‖B) be a Banach space. Then every Cauchy net (xα) in
(B, ‖ · ‖B) is convergent, i.e., there exists x0 ∈ B such that for every ε > 0 there exists
some index α0 such that α � α0 implies ‖xα − x0‖B < ε.

Proof. First we select a Cauchy (subnet, resp. ) sequence (xαn), in the following way:
For every n ∈ N there exists α′n such that for α, α′ with α � α′n and α′ � α′n implies

‖xα − xα′‖B < 1/n.

We may choose α1 = α′1, α2 � α1, α
′
2, α3 � α1, α2, α

′
3, inductively.

It is clear that we have thus

‖xαk
− xαm‖B <

1

n
for k,m ≥ n.
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By the completeness of (B, ‖ · ‖B) this sequence will have a limit, let us call it x0.
Although we do not claim that the Cauchy sequence chosen in this way can be considered
as a subnet 24 we can obtained the required estimates using it.

In order to verify convergence of the Cauchy-net itself let ε > 0 be given. Choosing
n such that ε > 1/n we can use αn etc.

‖xα − x0‖B ≤ ‖xα − xαn‖B + ‖xαn − x0‖B < ε, ∀α � αl.

HINT: In Heine’s book [9] one finds a general argument, why for pseudo-metric spaces
the completeness assumption (involving sequences only) is equivalent to the convergence
of Cauchy-nets (Satz 3.1-2).

5.2 Banach’s fixed point theorem

Valid in general metric spaces one has:
Certainly relevant for many applications:

Theorem 15. For every contractive mapping S :
(
B, ‖ · ‖B

)
→
(
B, ‖ · ‖B

)
which is

contractive, i.e. satisfies for some γ < 1:

‖S(b)‖B ≤ γ‖b‖B, ∀b ∈ B, (46)

then there exists a unique fix point b̃ ∈ B, i.e. with S(b̃) = b̃

Proof. It is easy to verify that Sn(b0) is a Cauchy sequence in
(
B, ‖ · ‖B

)
for any given

(starting point) b0 ∈ B. Consequently it is convergent. In addition it is easy (!the reader

is still encouraged to check it!) to verify that the limit b̃ := limn→∞ S
n(b0 is in fact a

fix point for the mapping S and also the uniqueness of the fixed point. In particular the
limit b̃ does not depend on the choice of the initial value b0 ∈ B.

5.3 Strong Operator Convergence

The typical case of pointwise convergence is in the context linear functionals or operators.
A net (Tα)α∈I is convergent in the pointwise sense if limα Tαx exists for any x ∈ X. If

each of the operators Tα is a linear one the limit depends linearly on the argument, hence
T0x := limα Tαx defines the limit (in the strong operator sense). (verifying linearity is a
good exercise).

Lemma 18. The net Tα is strongly convergent (to the operator T0) if and only if for
every finite set F ⊂ X and ε > 0 there exists some index α0 such that

‖Tαx− T0x‖B < ε ∀α � α0.

24The notion of a subnet requires that it is “cofinal”, which seems to be difficult to prove, if not false
for the general case, but we will not need any argument of the form: “ if a subnet is convergent, then
the Cauchy-net is convergent itself”, instead we can argue directly:
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Proof. The formulated condition implies of course the strong convergence, because one
can choose F = {x}, an arbitrary one-point set.

Conversely, strong convergence plus the axioms concerning directed sets imply the
condition, through a proof by induction. For sets F of cardinality 1 this is just the
assumption. Assume that it is valid for sets F of cardinality n, we have to show that it
is true for sets with n+ 1 elements.

We may assume that F with elements x1, . . . , xn is OK and xn+1 is an additional
element. Given ε > 0 there exist two indices α1 for the finite set F and α2 for x. Choosing
then α3 � α1 and α3 � α2 we have for α � α3

‖Tαxk − T0xk‖B < ε ∀α � α3 k = 1, . . . , n+ 1.

A typical “application” (making future proofs easier) is based on the following

Definition 29. A ! bounded ! directed family (a net or sequence) (hα)α∈I in a Banach
algebra (B, ‖ · ‖B) is called a BAI (= bounded approximate identity or “approximate
unit” for (B, ‖ · ‖B)) if

lim
α
‖hα · h− h‖B = 0 ∀h ∈ B.

The terminology of (!one approximate unit, meaning one family) is mostly justified
by the following lemma:

Lemma 19. A Banach algebra (A, ‖ · ‖A) has an approximate identity if and only if
there exists a bounded net eα with

limαeα • a = a, for a ∈ A. (47)

Proof. The validity of ?? implies of course the existence of elements satisfying the above
definition.

Conversely, one has to form such an indexed family (eα)α∈I , given the validity of the
definition. For this purpose one generates as index set all pairs (F, ε), where F is a finite
subset of A and ε > 0.

The main step (more or less allowing to give an inductive argument) is the following:
Given a1, a2, which (for simplicity of the argument) may be assumed to be normalized,
i.e. satisfy ‖ai‖A = 1, i = 1, 2..

If we assume there exists C < ∞ (the uniform a priori bound) such that for every
a ∈ A and ε > 0 one can find h ∈ A with25

‖h‖A ≤ C and ‖h • a− a‖A < ε. (48)

So we have ‖hi • ai − ai‖A for i = 1, 2.
As an index set one can choose which consists of pairs of the form (F, ε), where

F ⊂ A is any finite set of elements from the algebra A and ε > 0. As usual the natural
order on these pairs in term of the size of F and the smallness of ε.

For details of the proof one probably can look up the Lecture Notes of H. Reiter [13].

25One way of looking at this assumption is to say that there is no price to be paid, in terms of an
increased norm of the element h serving as replacement of the identity element, for better and better
approximation. Instead, the costs are known to be controlled independent of the smallness of ε > 0.
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5.4 Iterated limits of nets and interchange of order

The following result should be compared with a theorem on iterated limits provided in
Kelley’s book ( [12], p.69).

Lemma 20. Assume that (Tα)α∈I and (Sβ)β∈J are two bounded nets of operators in
L(V ), which are strongly convergent to limits T0, and S0 resp. i.e.

To(v) = lim
α
Tα(v) ∀v ∈ V and S0(w) = lim

β
Sβ(w) ∀w ∈ V .

Then the net (Tα ◦ Sβ)(α,β) (with index set I × J and natural order26) is also strongly
convergence, with limit T0 ◦ S0, i.e. for each v ∈ V one has:

To[S0(v)] = [T0 ◦ S0] (v) = lim
α,β

[Tα ◦ Sβ] (v). (49)

In detail: For any v ∈ V and ε > 0 there exists a pair of indices (α0, β0) ∈ I × J such
that for every α � α0 in I and β � β0 in J implies

‖T0(S0(v))− Tα(Sβ(v))‖ ≤ ε. (50)

In particular we have in the sense of strong limits:

T0 ◦ S0 = lim
α

lim
β
Tα ◦ Sβ = lim

β
lim
α
Tα ◦ Sβ (51)

Proof. Note that |‖Tα|‖ ≤ C <∞. The statement depends on the following estimate

‖Tα[Sβ(v)]− T0[S0(v)]‖ ≤ ‖Tα[Sβ(v)]− Tα[S0(v)]‖+ ‖Tα[S0(v)]− T0[S0(v)]‖ (52)

The first expression can be estimated as follows:

‖Tα[Sβ(v)]− Tα[S0(v)]‖ ≤ |‖Tα|‖ ‖Sβ(v)− S0(v)‖ ≤ C‖Sβ(v)− S0(v)‖, (53)

which gets < ε/2 for β � β0 (chosen for ε/C), while the second term can be estimated
by

‖Tα[S0(v)]− T0[S0(v)]‖ ≤ ε/2, (54)

for any α with α � α0 (choosing w = S0(v)).
Finally we have to check that the validity of (54) implies that also the iterated limits

exist (of course with the same limit). We elaborate on the first iterated limit ( namely
limα limβ) because the other one works in the same way27. So for the situation in (50)
we can first fix any α and look at the net (Tα(Sβ(v)))β∈J . By assumption the limit
S0(v) = limβSβ(v) exists. Since Tα (for fixed α first) is a bounded linear operator also
the following limits exist and can be estimated by

‖T0(S0(v))− Tα(lim
β
Sβ(v))‖ ≤ ε, if only α � α0.

Setting w0 := S0(v) we see that by assumption also (Tα(w0)) is convergent, and of
course the last estimate remains true in the limit (due to the continuity of the norm),
hence

‖T0[S0(v)]− lim
α

lim
β
Tα[Sβ(v)]‖ ≤ ε.

Since ε > 0 was arbitrary, equation (51) is valid.

26Of course I and J may have completely different order!
27Observe however that the order in which the operators are applied does NOT change!!!
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Remark 8. Note that only the boundedness of the net (Tα) is only required, not that
of (Sβ). Moreover, in the case of sequences (instead of nets) the uniform boundedness
principle can be applied, which tells us that the strong convergence of operators implies
the norm convergence of the corresponding sequence. This situation could be formulated
as a corollary then, i.e. strong convergence of (Tn) and (Sk) implies

lim
n

lim
k
Tn[Sk(v)] = T0[S0(v)] = lim

k
lim
n
Tn[Sk(v)] (55)

A very special case of this situation occurs in the context of (double) Banach mo-
dules. Assume that (hβ) is bounded approximate unit in

(
C0(Rd), ‖ · ‖∞

)
and (gα) an

approximate unit in
(
L1(Rd), ‖ · ‖1

)
.

Lemma 21. For f ∈
(
Lp(Rd), ‖ · ‖p

)
, 1 ≤ p <∞, one has norm convergence:

lim
α

lim
β
gα∗(hβ·f) = lim

β
lim
α
gα∗(hβ·f) = f = lim

α
lim
β
hβ·(gα∗f) = lim

β
lim
α
hβ·(gα∗f) (56)

Remark 9. The same relations are valid for f ∈ S0(Rd), just assuming that (hβ) is a
bounded approximate unit in

(
FL1(Rd), ‖ · ‖FL1

)
. Typically it could be the dilation of

the form (Dρh(x))ρ>0, for some h ∈ FL1(Rd) with h(0) = 1, where ρ � ρ0 if ρ ≤ ρ0.

Corollary 7. Assume that (eα)α∈I and (e′β) are two bounded approximate identities in
a Banach algebra (A, ‖ · ‖A). Then (eα • e′β)(α,β) is a BAI in (A, ‖ · ‖A) as well, with
the natural “orientation” on the index set I × J .

Applying a simple induction argument one obtains from this the following fact:

Corollary 8. Assume that (eα)α∈I is a bounded approximate identity in a Banach al-

gebra (A, ‖ · ‖A). Then (e
(•k)
α ) is a BAI in (A, ‖ · ‖A) as well, for every k ∈ N.

There is a completely similar argument applicable (hence left to the reader) in the
following situation:

Proposition 10. Given three normed spaces V,W and X we consider a a bounded,
bilinear mapping B from V ×W into X, i.e. a mapping B which is linear in each
variable and satisfies for some C > 0:

‖B(v,w)‖X ≤ C‖v‖V‖w‖W, ∀v ∈ V,w ∈W.

Then for any two convergent nets (vα)α∈I and (wβ)β∈J one has

B(v0,w0) = lim
(α,β)

B(vα,wβ), (57)

and in particular (as a consequence of (57))

B(v0,w0) = lim
α

lim
β
B(vα,wβ) = lim

β
lim
α
B(vα,wβ). (58)
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5.5 Strong operator convergence and dual operators

Convergence of operators (in the operator norm) implies (and is in fact equivalent) to the
convergence of the adjoint operators, since clearly T 7→ T ′ is isometric (see above) and
compatible with additivity ( > Exercise). However often one has only strong operator
convergence, and then a separate consideration is needed.

Recall the following definition:

Definition 30. A bounded net (Tα)α∈I of operators in L(V,W) is strongly convergent to
T0 ∈ L(V,W) (equivalently one says: the convergence takes place in the strong operator
topology) if one has “pointwise” norm convergence in (W , ‖ · ‖W ):

lim
α
Tα(v) = T0(v) ∀v ∈ V . (59)

Note furthermore that due to the boundedness and linearity of the operators it is
enough to test for the validity of (30) on a total subset for V resp. for v from a dense
subspace of of (V , ‖ · ‖V ).

Our simple observation is the following one. If the net (or sequence) of operators,
applied to an arbitrary element v ∈ V shows norm convergence one (only resp. still has)
w∗-convergence28, if one applies the corresponding net of dual operators to any given
w′ ∈W′:

Lemma 22. Assume that the bounded net (Tα)α∈I is strongly convergent T0, then the
dual operators, applied to any w′ ∈ W′, i.e. the net (T ′αw

′)α∈I is (at least resp. still)
w∗-convergent, i.e. one has

∀w′ ∈W′ : lim
α

[T ′αw
′](v) = [T ′0w

′](v), ∀v ∈ V. (60)

Proof. The proof is quite straightforward, following the definition. Since the net is boun-
ded the same is true for the net of dual operators, hence the net (T ′αw

′)α∈I is bounded
for each w′ ∈W′. According to the definition of the dual operator one has

[T ′αw
′](v) = w′(Tαv)→ w′(T0v) = [T ′0w

′](v). (61)

A variant of this proof would allow to replace the fixed w′ ∈ W′ by a net (w′β)β∈J
with limit (in the w∗-sense!) w′0 and still have convergence (of the iterated limit)

[T ′αw
′
β](v) = w′β(Tαv)→ w′0(T0v) = [T ′0w

′
0](v). (62)

There are other things to be observed, since one has now three! topologies (resp.
modes of convergence of nets) we should take care a little bit about the hierarchy of
those types of convergence (and also the corresponding notions of continuity of linear
mappings T ).

For example we have seen (check once more) that a linear operator between dual
spaces, e.g. the dual operator T ′ ∈ L(W′,V′) for some T ∈ L(V,W), i.e. maps conver-
gent nets in the domain (with norm convergence) into equally norm convergent nets in
the range space.

28To be discussed later on!
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Now we have e.g. w∗−w∗- continuous operators T , which means that v′0 = w∗- limαv
′
α

in V′ implies T (v′0) = w∗- limαT (v′α) in W′.
In principle one can also mix topologies and ask about operators which convert one

of the type of convergence of nets into another:

Lemma 23. The convergence in norm implies weak convergence in a normed vector
space. If the vector space is the dual of some other normed space (e.g. V = W′), we also
have the w∗-convergence, which follows in turn from weak convergence29.

Proof. That norm convergence implies weak convergence is an easy exercise. Now assume
that you have weak convergence of a net (w′α) in V = W′ with limit w′0, and you want
to verify that this net is also w∗-convergent to the same limit.

The main tool is the Hahn-Banach theorem, resp. its corollary showing that the
natural embedding iW : w 7→ ıW(w), given by

ıW(w′) := w′(w) ∀w ∈W

defines an isometric (!) embedding from W into W′′.
Now given w we have to check whether

lim
α

w′α(w) = iW(w)(w′α)

is convergent, but obviously iW(w) defines a linear functional in (W′)′, and hence by
assumption (of weak convergence) we have

iW(w)(w′α)→ ıW(w)(w′0).

Knowing that different topologies correspond to different types of convergence we
may have in fact different set of “continuous” linear functionals. For example, a linear
functional σ (a linear mapping with values from the vector space into the field C or
R) is continuous with respect to the w∗-topology if and only any w∗-convergent net
(v′α) is mapped into a convergent net of (complex) numbers, i.e. σ(v′α) → σ(v′0) in C.
Clearly any (ordinary) such continuous linear functional also respecting the ordinary
convergence (which is a stronger assumption), so can search for those (new) linear w∗-
continuous functionals among the elements of the ordinary dual space V′.

Therefore the following result (important, but for now without proof) about dual
space (i.e. the description of all continuous linear functionals):

Theorem 16. • For any normed space V the dual space of V with the weak topology
is just V′;

• For any normed space V the dual space of V′ with the w∗-topology is just V.

• In particular, if
(
B, ‖ · ‖B

)
is a reflexive Banach space, then the dual space of B′

with the weak topology is just B.

29One can show that w∗-convergence is equivalent to weak convergence of nets, i.e. the converse below
is true if and only if the underlying Banach space W is reflexive!
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Proof. Just comments first: The first statement says: Although the convergence in the
weak sense is typically strictly weaker than the concept of norm convergence (i.e. there
are almost all the time weakly convergent nets which are not norm convergent. Still there
is the same dual space, i.e. one has to verify that any linear functional which respects
norm convergence is automatically respecting weakly convergent nets.

The other statement says, that if only w∗-convergence is used, one really does not
have the same (full) dual space, but just those functionals within W′′ which are coming
from the original space W via the natural embedding! (once more: this is not a proof
but just an explanation of the view!)

Finally it is clear that for reflexive space there is no difference between the w∗ and
the weak topology, and thus we are again in the situation of the first case.

MAYBE placed at a wrong position

5.6 A number of simple applications in HA

• For x0 ∈ G we may consider the net (Tx)x∈G as a net, directed by “closeness” to
x0. It is easier to formulate the condition here for metric groups G , where one can
simply define y � x if d(y, x0) ≤ d(x, x0).

• Similar one can take the operators (Dρ) oriented towards ρ0 (e.g. ρ0 = 1) with
ρ1 � ρ1 if d(ρ1, ρ0) ≤ d(ρ2, ρ0).

• Again assume G to be a metric group (for simplicity), such as Rd. Consider the
family (SpΨ), where Ψ is running through the family of all BUPUs, with Ψ1 � Ψ2 if
|Ψ1| ≤ |Ψ2|, where |Ψ| is the maximal support size of Ψ = (ψi)i∈I , i.e. the infimum
over all δ > 0 such that

∀i ∈ I : supp(ψi) ⊆ Bδ(xi),

for suitable families (xi)i∈I .

It is then interesting to look at the corresponding dual operators. Of course, the
given operators can be viewed as a bounded family of operators on different spaces, and
therefore the dual operators, defined on the corresponding dual spaces, may appear as
quite different.

First let us consider the case (V , ‖ · ‖V ) =
(
C0(Rd), ‖ · ‖∞

)
, because this is a rather

concrete and simple space. The dual space is (by convention, chosen here) just the space
of bounded measures on Rd, i.e. (Mb(Rd), ‖ · ‖Mb

) :=
(
C ′0(Rd), ‖ · ‖C′0

)
, by definition.

Remark 10. It is not difficult to check that the mapping, which assigns to each ope-
rator T ∈ L(V ) the corresponding dual operator T ′ ∈ L(()V ′) is an isometric anti-
isomorphism of Banach algebras, since (T1 ◦ T2)′ = T ′2 ◦ T ′1.

Bounded families of operators on
(
C0(Rd), ‖ · ‖∞

)
then correspond to bounded fa-

milies of operators on the dual spaces. In other words, we consider the mapping T 7→ T ′

as an isometric mapping from L(C0(Rd)) to L(Mb(Rd)).

Remark 11. Just for the sake of completeness let us recall that the dual operators of the
operators defined above are easily identified, e.g. by their action on typical representa-
tives of the dual space.
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Lemma 24.
T ′x(δz) = δz+x

Proof.

[T ′x(δz)](f) = δz(Txf) = Txf(z) = f(z − (−x)) = [δz+x](f), ∀f ∈ C0(Rd).

This example also shows that one cannot expect to have for all w′ ∈ C ′0(Rd):
‖T ′x(w′)− T ′0(w′)‖C′0 → 0 forx→ 0.

Next we look at the dilation operator:

Lemma 25.
Dρ
′(δz) = δρz, ρ 6= 0, z ∈ Rd.

Proof.
[Dρ

′(δz)](f)δz(Dρf) = f(ρz) = δρz](f).

Many of the linear functionals on
(
C0(Rd), ‖ · ‖∞

)
are in fact given by ordinary func-

tion, which create bounded linear functionals via integration: For g ∈
(
L1(Rd), ‖ · ‖1

)
one finds that

µg(f) :=

∫
Rd

f(x) g(x)dx, f ∈ C0(Rd). (63)

Applying the adjoint dilation operator to such a function shows that for “ordinary func-
tions” the dual of the (value preserving) dilation operator is an integral (hence L1-norm)
preserving dilation operator (going in the opposite direction).

Lemma 26. For any g ∈ L1(Rd) one has:

[Dρ
′ µg] = µh, for h = St1/rho g,

where we may define Stγ via

Stγ g(x) = γ−dg(x/γ).

Finally let us compute the action of the dual operator to SpΨ on (Mb(Rd), ‖ · ‖Mb
):

Lemma 27. Given any partition of unity Ψ = (ψi)i∈I one has

SpΨ
′(µ) = DΨ(µ) :=

∑
i∈I

µ(ψ)δxi .

Proof. One can in fact show that this sum is absolutely convergent and that µ =∑
i∈I ψiµ is also absolutely convergent, with

∑
i∈I ‖ψiµ‖Mb(Rd) = ‖µ‖Mb(Rd).

There are several concrete situations in analysis where in fact w∗-convergent nets
are considered. The most popular occurs in the description of the Riemann integral on
(C(I), ‖ · ‖∞).
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Proposition 11. For every pair of Banach space (V , ‖ · ‖V ), (W , ‖ · ‖W ) and any T ∈
L(V,W) the operator T ′′ is an extension of T to an operator from W ′′ to V ′′, i.e. 30

T (iV (v)) = iW (T (v), v ∈ V .

In particular, for the case W = V one has: For any T ∈ L(V ) the operator T ′′ :
W ′′ → W ′′ leaves the closed subspace iV invariant and can be “naturally identified”
with T on this subspace.

The situation can be well described by the following diagram:

V ′′
T ′′−→ W ′′

⊆ ⊆

V
T−→ W

Proof. Of course we will make heavy use of one of the important consequences of the
Hahn-Banach Theorem, namely the fact, that due to the existence of plenty of linear
functionals the natural embedding iB (for any normed space B), given by

iB(b)(b′) = b′(b), b ∈ B,b′ ∈ B′. (64)

So we have to check on the action of T ′′ on iV (v).

T ′′(iV (v))(w′) = iV (v)(T ′(w′)) = [T ′(w′)](v) = w′(T (v)) = iW (T (v))(w′).

An easy example (where of course a more direct argument could be applied) is given
by the following situation. Consider W = V = cosp, endowed with the sup-norm. Then
it is not difficult to verify that V ′ =

(
`1, ‖ · ‖1

)
and furthermore V ′′ = `∞, again with

the sup-norm (and the natural embedding is just the usual embedding from c0 into `∞.
Assume that one has a multiplication operator, which acts [boundedly] on c0: T :=

My : x → z := x. ∗ y (in the sense of pointwise multiplication: zn = xn · yn, n ∈ N).
Clearly such an operator has closed graph and therefore has (!) to a bounded operator,
which in turn implies that x (the multiplier sequence) has to be a bounded sequence,
i.e. z ∈ `∞. Obviously T ′ is just the same operator, but now considered on `1, while T ′′

is now the same multiplication operator, viewed as operator on `∞.

5.7 Weak versus w∗-convergence

There are various types of convergence which are weaker than the usual norm conver-
gence. In fact all of them correspond to topologies which turn a given vector space in
to topological vector spaces (which means, that addition and scalar multiplication are
continuous operations with respect to the given topology). We do not want to go deeply
into abstract set-theoretic topology, but it is convenient to note that one simply has to
replace the collection of ε-balls around zero by other systems of neighborhoods of the

30Here we denote by iB the natural embedding of B into the double dual space B′′.
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origin (the zero-element 0 ∈ V ), which can then be “moved around” (any neighborhood
of v ∈ V is just a neighborhood U of 0, shifted to the position v, i.e. of the form v +U.

The two most important are the so-called weak convergence in an arbitrary normed
space, and in the case of a dual space one has (in addition to the weak convergence) also
the w∗-convergence.

Definition 31. For a normed space (V , ‖ · ‖V ) the concept of weak convergence is
described as follows:
A net (vα)α∈I is weakly convergent with limit v0 ∈ V if one has

lim
α
σ(vα) = σ(v0), ∀σ ∈ V ∗.

Note that, although the norm is not playing an explicit role in the definition of weak
convergence it still is important in this definition. Since a stronger norm (think of a
more sensitive measurement) has fewer convergent nets, hence more continuous linear
functionals the reservoir of linear functional varies (potentially considerably) with the
norm.

In fact the following observation is a good exercise about weak convergence:

Lemma 28. Assume that a normed space V 1 is continuously embedded into another
normed space V 2 as a dense subspace. Then weak convergence of a net (vα)α∈I within
V 1 implies weak convergence of this net as a net within V 2.

Proof. Since V 1 is continuously embedded into V 2 every continuous linear functional
on V 2 is also a continuous linear functional on V 1. Alternatively, one can argue, that
one has

‖v‖(2) ≤ C · ‖v‖(1),∀v ∈ V 1,

hence for any σ in the dual space of V 2 one has

|σ(v)| ≤ ‖σ‖′V 1‖v‖(2) ≤ C · ‖σ‖′V 1‖v‖(1)

This implies that every bounded linear functional with respect to the coarse norm defines
also a bounded linear functional in the stronger sense. On the other hand the density
assumption implies that the mapping σ 7→ σ|V 2 is in fact an embedding, i.e. is injective
(and not only bounded).

Since there are (potentially) more bounded linear functionals on the smaller space
(with the more sensitive norms) the weak convergence induced from the strong/sensitive
norm implies the weak convergence with respect to the less sensitive norm31.

Remark 12. It is also clear that in the case of a basis for the dual space it may not be
necessary to test for weak-convergence for an arbitrary element σ ∈ V ∗, but rather for
the elements of a basis of this space. If the net is a priori bounded in the norm it is even
sufficient to check the convergence for a generating system! (Exercise).

For example: What does it mean to have weak convergence in `p, for 1 < p < ∞?
We claim that this is just coordinatewise convergence (at least for bounded nets this is
an easy exercise). To be discussed (hopefully) later on.

31In other words: the hierarchy of convergencies which is valid for the norms is - given the density of
embedding - also covariantly, meaning in the same direction, going over to the weak convergence.
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First of all it is clear that x → xk is a bounded linear functional on
(
`p, ‖ · ‖p

)
(due to the trivial estimate |xk| ≤ ‖x‖p!) and consequently δk : x 7→ xk is a bounded
linear functional. Thus the definition of weak convergence for (xα)α∈I to some y ∈ `p

immediately implies the convergence in each coordinate, i.e. (xα,k → yk for each k ∈ N:
(once more: each δk is one of the possible set of all bd. linear functionals that have to
respect convergence).

Conversely, assume that we have a bounded net (xα)α∈I with C1 := supα ‖xα‖, and
ask, whether for a given bd. linear functional σ ∈ `p′ one can guarantee convergence
of σ(xα) (in C), assuming only coordinatewise convergence. By taking differences (xα
minus the limit) one may assume without loss of generality that the limit is just 0 ∈ `p.

Knowing that the dual space of
(
`p, ‖ · ‖p

)
is just

(
`q, ‖ · ‖q

)
, we know that there

exists a (uniquely determined) sequence z ∈ `q such that σ(x) =
∑

k∈N zkxk.. Using
next the fact that q <∞ (because p > 1 was assumed!) we can find for every ε > 0 some
K > 0 such that (

∑
k>K |zk|q)1/q ≤ ε. Defining y ∈ `q by yk = zk for k ≤ K and zero

for k > K we have thus ‖y − z‖q ≤ ε, and consequently (using Hoelder’s inequality)

|σ(xα)− σy(xα)| = |σz−y(xα)| ≤ ‖y − z‖q‖xα‖p,≤ ε · C1

for all α∈I. Now given ε > 0 and having chosen K as above one can find an index (using
the rules of the convergence of nets, plus the observation that there is only a finite!! set
of indices k = 1, 2, . . . , K which has to be observed) in order to find out that there exists
some α0 such that for α � α0 one can be assured (as a consequence of the coordinatewise
convergence) that one has (just a finite sum!)

|σy(xα)− σy(0)| ≤
K∑
k=1

|zk|σek(xα)| ≤
∑

k = 1K |zk||δk(xα)| ≤ ε

e.g. by making every term smaller than ε/(K‖z‖q).

Definition 32. For a dual V ∗ of a normed space (V , ‖ · ‖V ) the concept of w∗-convergence
is described as follows: A net (v′α)α∈I is w∗-convergent in

(
V ∗, ‖ · ‖V ∗

)
with limit v′0 ∈ V ∗

if one has
lim
α

v′α(v) = v′0(v), ∀v ∈ V .

Lemma 29. Weak convergence within
(
V ∗, ‖ · ‖V ∗

)
implies w∗-convergence. Obviously

the two concepts coincide if 32 the Banach space (V , ‖ · ‖V ) is reflexive.

Proof. It suffices to observe that the w∗-convergence can be considered as weakening of
the concept of weak convergence. In fact, it restricts to necessity to have convergence of
σ(v′α) to those elements which are in the image of V within V ′′, since for them we have
obviously

iV (v)(v′α) = v′α(v),v ∈ V .

For reflexive Banach spaces there are simply “no more functionals than those”. The
comment (see footnote) is less obvious (but still true).

32.. and in fact only if..
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Remark 13. Just a hint: since (as a consequence of the Riesz representation theorem,
which allows to identify the dual space of a Hilbert space H with the space itself (in a
“natural way”) one can show that “of course” every Hilbert space is reflexive. Hence we
have at least for Hilbert space the coincidence of weak and w∗-convergence.

Remark 14. Historical remarks concerning w∗-convergence, in connection with the cen-
tral limit theorem: there one may understand where the word “weak” comes in (the star
simply refers to the fact that one is having a net or sequence in a dual space, hence V ∗).

5.8 Characterizing weak convergence in Banach spaces

We want to demonstrate now that Thm. (9) (which was an immediate consequence of
the Hahn-Banach theorem).

Theorem 17. A net (vα)α∈I in a normed space (V , ‖ · ‖V ) is weakly convergent to
v0 ∈ V if and only if for any finite-dimensional subspace V0 and any projection P onto
such a space the net (P (vα))α∈I is convergent (to P (v0)) in (V , ‖ · ‖V ).

Proof. Assume that one has a net which is weakly convergent to v0. Then the proof of
theorem 9 implies that the projections onto the finite dimensional space can be written
(!! any such projection can be described using a basis, not necessarily the biorthogonal
basis,... to be explained a little bit better!) using continuous linear functionals. Hence
(using the finiteness of the sum) one finds that also the projections onto arbitrary finite-
dimensional spaces will converge properly (and of course towards P (v0)).

Conversely, assume that any finite-dimensional projection applied to the net (vα)
produces a norm convergent family. We still have to show that then weak convergence
follows. Hence one should be able (!open now) to show: For any given v′ ∈ V ∗ we
have to make the connection between functionals and finite dimensional subspaces of
V . Of course, the null-space N of v′, i.e. Nv′ := {n,v′(n) = 0} is a hyperplane, i.e.
codimension one. Expressed differently, using the quotient theorem 21 implies that V /N
is isomorphic to C (resp. K). In fact, for any v1 /∈ N one has v′(v1) 6= 0 (otherwise v′

would vanish on all the elements of V, because V decomposes into a direct sum of N and
the (one-dimensional) linear span of v1 in V . The projection onto the one-dimensional
generated by v1 assigns to each λv1 the value γ · λ (for some fixed γ 6= 0, depending on
the choice of v1). But the restriction of v′ onto this one-dimensional space if also non-
trivial, hence another (non-trivial) multiple of λ, hence knowing convergence of P (vα)
onto the one-dim. subspace generated by v1 is just the same as knowing the convergence
of v′(vα) to (obviously) v′(v0).

WE ALSO HAVE TO DISCUSS the uniqueness of the weak limit, ano-
ther consequence of the HB theorem!

There is also the concern, how to describe a basis of the neighborhood of 0 ∈ V for
the weak topology. As such one can choose some finite subset F ⊂ V ∗ and ε > 0 and
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define
U(F, ε) := {v ∈ V | |v′(v)| < ε ∀v′ ∈ F}. (65)

The neighborhoods for 0 ∈ V ∗ for the w∗-topology looks quite similar: Given any finite
set E ⊂ V and ε > 0 we define

V (E, ε) := {v′ ∈ V ∗ | |v′(v)| < ε ∀v ∈ E}. (66)

The comparison of the two topologies, when applied to V ∗ is again based on the fact
that iV (E) ⊂ (V ∗)′.

From these descriptions it is also clear why it is necessary to go to nets (and not to
restrict the attention to sequences) in order to describe continuity of convergence.

5.9 Dual and adjoint operators for Hilbert spaces

We are discussing in this section that the adjoint operator is more or less the same as
the adjoint operator (which is only defined via the scalar product in the Hilbert space,
which in turn allows to identify the dual space of the Hilbert space with the Hilbert
space itself, using the so-called Riesz representation system.

The idea is relatively simple: Given an operator T ∈ L(H) there exists the dual
operator T ′ ∈ L(()H′). Since (via Riesz Repr. Theorem) H = H′ (well, it is not an
isometric isomorphism of Banach space, because it is anti-linear, i.e. does not completely
respect scalar multiplication) this means that it also can be viewed as an operator fromH
to H. Given y ∈ H we view it as a linear functional σy ∈ H′, with σy(x) = 〈y,x〉H,∀y ∈
H, and by the definition of the dual operator T ′(σy) is a well defined linear functional,
which can be represented by a uniquely determined vector (let us call it) z ∈ H, i.e.
〈x, z〉H = T ′(σy)(x),∀x ∈ H. By the definition of the dual operator we ave

T ′(σy)(x) := σy(T (x)) = 〈T (x),y〉H

and using the definition of the adjoint operator T ∗ we see that

〈x, z〉H = T ′(σy)(x) = 〈x, T ∗(z)〉H,

or in other words, T ∗(y) is just the element which corresponds to the image of T ′(σy).
So all together we have

σT ∗(y) = T ′(σy),∀y ∈ H. (67)

5.10 The Banach-Alaoglu Theorem

One of the most important existence theorems used in many applications to obtain
(e.g. in the context of PDF) from a bounded sequence of approximate solutions a “true
solution” to a given problem, or an element, which has “some ideal property” (as the limit
of elements which have this property more and more) is the Banach-Alaoglu theorem.

It states, that the unit-ball B1(0) ⊂ B′ (consequently any w∗∗-closed, bounded
subset) in a dual space is compact in the w∗−topology.
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Theorem 18. The unit ball B1(0) = {b′ | ‖b′‖B′ ≤ 1} is compact with respect to the
w∗-topology, or in other words, any net (b′α)α∈I in B1(0) there exists a subnet (b′β)β∈J
which has a w∗-limit b′0 within B1(0).

Consequently B1(0) is weakly compact in (B′, ‖ · ‖B′) if
(
B, ‖ · ‖B

)
is a reflexive

Banach space, but also the converse is true.

Note that it is part of the claim that the unit ball of the dual space is not only closed
with respect to the very strong form of norm convergence, but also (as a consequence
of the PUB!) closed with respect to the much coarser w∗-topology. Since the increased
coarseness of the topology allows for many more convergent sequences and indeed nets
the closedness property is in fact a stronger one! (to be discussed also in the exercises).
This is one of the important theorems33 in functional analysis. See also

http://de.wikipedia.org/wiki/

Satz_von_Banach-Alaoglu#F.C3.BCr_Banachr.C3.A4ume

For the proof of this theorem one makes use of one of the strong results from general
topology: the product of an arbitrary family of compact topological spaces, endowed
with the correct, i.e. the product topology (the topology of pointwise convergence, if we
view the product space as a space of functions over the index set) is as again a compact
space. The strength of this result is partially due to the fact that arbitrary index sets are
allowed, which in turn makes it necessary to use the axiom of choice resp. Hausdorff’s
maximality principle, see

http://de.wikipedia.org/wiki/Hausdorffs_Maximalkettensatz

We do not give a proof here, but rather point out the two main steps that are used
in the argument (aside from the power of Tychonoff’s product result):

• First of all the elements of B1(0) are considered not as functions on the full Banach
space

(
B, ‖ · ‖B

)
, but rather again only on the unit ball B1(0) ⊂ B. Clearly, if

linear functionals from B′ are known on B1(0) it is trivial to know their (using
scalar multiplication for dilation) on all of B (simply because for λ = 1/‖b‖B one
has b′(b) = b′(λb)/λ). In this way the range of b′ on B1(0) ⊂ B is compact (!)
within C!

• Secondly one needs to show that the linear functionals are a w∗-closed subset
within this collection. But this is easy, because the linearity can be characterized by
pointwise relationships, namely b′(b1 +b2) = b′(b1)+b′(b2) and b′(γb) = γb′(b)
and if a net of (linear) functionals (b′α)α∈I fulfills these conditions and is pointwise
convergent also the limit is satisfying this condition. Indeed

b′0(b1 + b2) = lim
α

b′α(b1 + b2) = lim
α

b′α(b1) + b′α(b2) =

33The validity of this theorem is also one of the reasons why the w∗-convergence has to be discussed
in a FA course! The final/additional claim characterizing reflexivity via the weak compactness of B1(0)
is usually not part of the B-A theorem, but has been added for convenience of the reader here. Maybe
it should be given as a separate statement.
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= lim
α

b′α(b1) + lim
α

b′α(b2) = b′0(b1) + b′0(b2)

and by a similar argument b′0 is compatible with scalar multiplication.

This results is given in most functional analysis courses and books (e.g. [4, 17]).

5.11 The dual of B′ with the w∗-topology

Motivation: We know from linear algebra, that the set of solutions to the homogeneous
system of linear equations described in matrix form, i.e. the matrix equation A ∗ x = 0
is just the kernel of A or Null(A), and is known to be the orthogonal complement of
the rowspace Row(A) of Cn (for a typical m× n-matrix), actually it should be seen as
the column space of the adjoint operator (matrix) A′ = (At).

In fact, each line in the system of equations describes a hyperplane, where the cor-
responding row vector is used as a normal vector (to describe the hyperplane). In this
way the system of equations expresses that a solution to the homogeneous system of
equations has to be a vector perpendicular to each of the row vectors, but any such
has to be orthogonal to any linear combination of row vectors (whether they are line-
ar independent or now, they are by definition a spanning set for the row space), i.e.
x ∈ Null(A)⇒ x ⊥ Row(A).

A technical lemma in this (linear algebra) spirit needed for the subsequent proof is
the following one:

Lemma 30. Given a finite set of linear functionals F = (κj)
K
k=1 in the dual space of

some normed space (V, ‖ · ‖), and one additional linear functional κ0 ∈ V′ with the
property that

∩Kk=1 Null(κk) ⊆ Null(κ0). (68)

Then κ0 is just a finite linear combination of the given functionals, i.e. there are coeffi-
cients (ck)

K
k=1 in C such that κ0 =

∑K
k=1 ckκk.

This is Prop. 1.4. of Appendix A in [4].

Proof. One can reduce the problem to the situation that for each j ∈ 1, . . . , K

∩k 6=j Null(κj) $ ∩Kk=1 Null(κk), (69)

i.e. Null(κj) actually contributes to the intersection of null-spaces34. In fact, after elimi-
nating possible unnecessary functionals from F one still has the same intersection, but
a “minimal set” of linear functionals with the same intersection of null-spaces.35

34One may think that otherwise it is already a linear combination of the other ones and therefore one
does not have to make use of it.

35This is, slightly in disguise, the assumption that one may - without loss of generality - assume that
the finite family F is linear independent in B′, resp. that one should select from a given set a linear
independent set of generators and work from that.
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Assuming the validity of (69) we can find for each j ∈ {1, . . . , K} some vj ∈ V with
vj ∈ V such that κj(vj) 6= 0 but κj(vk) = 0 for k 6= j. Of course one can assume (after
rescaling of the elements vj found in this way that

κj(vk) = δj,k (Kronecker Delta function) (70)

In other words, the vectors (vj)
K
k=1 are a set of linear independent vectors such that

(κj)
K
k=1 (the given [linear independent!] sequence of linear functionals) are biorthogonal

to those chosen vectors.36

Similar to the way in which one expands a given functional on a space into a linear
combination of dual basis vector elements we can now obtain the given functional κ0:

Once the sequence (vj)
K
j=1 is given one can define a mapping v 7→ ṽ on V as follows:

ṽ =
K∑
j=1

κj(v)vj,

and consequently one has for 1 ≤ k ≤ K, due to the biorthogonality property (70).

κk(ṽ) =
K∑
j=1

κj(v)κk(vj) = κk(v),

or all together
ṽ − v ∈ ∩Kj=1 Null(κj).

We can now consider any κ0 satisfying the assumption (68) that

κ0(v) = κ0(ṽ) =
K∑
j=1

κj(v)κ0(vj) = [
K∑
j=1

κ0(vj)κj](v) (71)

which is exactly the claimed statement, with cj = κ0(vj), for 1 ≤ j ≤ K.

************

Remark 15. In spirit also quite close to the well known fact that one has in the finite
dimensional setting, for any finite set F ⊂ V:

v0 ∈ (F⊥)⊥ ⇒ v0 ∈ span(F ).

************
We are now going to show that any w∗-continuous linear functional κ0 on a dual space

B′ is the linear combination of a finite set of elements of the form iB(bj), 1 ≤ j ≤ K. So
in fact we will derive directly from the w∗-continuity that there is such a finite set. So
our functional κ0 will be a w∗-continuous functional on V = B′.

36The situation is in fact very much the same that one has by showing that on the vector space P3(R)
of cubic polynomials the sequence of Dirac measures δx1

, δx2
, δx3

and δx4
, defined via δy(p(t)) = p(y)

(evaluation mapping) are linear independent (and hence a basis for the 4-dim. dual space of the four-
dimensional space P3(R)). The basis (alternative to the standard basis of monomials for P3(R)) is
then the family of Lagrange-Interpolation-Polynomials. Just look at

∏
k 6=j(x − xk) for j ∈ {1, 2, 3, 4}

and one will find exactly the situation described for the elements (vj) above, in the abstract setting!
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Since it is w∗-continuous it is also norm-continuous, i.e. κ0 ∈ V′ = B′′, but we have
to search whether κ0 has extra properties. The assumption certainly implies that one can
find for any ε > 0 some w∗-neighborhood U of 0 such that b′ ∈ U implies |κ0(b′)| < ε.
Since a basis for the neighborhood systems of the form U(F, ε′) is known we can find a
finite subset F ⊂ B, say {b1, . . . ,bK} and ε′ > 0 such that

|b′(bk)| < ε′ for 1 ≤ k ≤ K ⇒ |κ0(b′)| < ε. (72)

Now we just view for each such k bk b′ → b′(bk) = iB(bl)(b
′) as a linear functional on

B′. Note that certainly b′ ∈ Null(iB(bk)) implies that (72) can be applied and implies
|κ0(b′)| < ε according to (72). But also λb′ is in the same nullspace for any λ ∈ C, so
we conclude that

|λ||κ0(b′)| = |κ0(λb′)| < ε ∀λ ∈ C.

but his obviously implies that κ0(b′) = 0 ∈ C, or b′ ∈ Null(κ0).
The above argument shows that the w∗-continuity of κ0 ∈ B′′ puts ourselves into the

situation described in the above lemma (with κk = iB(bk), 1 ≤ k ≤ K) and so finally
we have verified that

(B′, w∗)′ = B.

This completes the proof.
As a consequence one can say: If one has an operator which is mapping (B′, w∗)

continuously into itself, then it has a dual operator which maps the dual spaces, which
are in fact the dual, which are in fact (cf. above) the pre-dual spaces (in the general case
of two dual spaces, both with their w∗-topology). In this sense we have

Theorem 19. Any bounded linear operator T from (B′, ‖ · ‖B′) into itself which is also
wwst-continuous is the dual operator of some (uniquely determined) operator S ∈ L(B).
In fact, the mapping S 7→ T = S ′ is a surjective and isometric mapping from L(B) into
the subspace of L(B′) which consists of all w∗-w∗--continuous linear operators on B′.

Proof. It is a good exercise the verify that any dual operator T := S ′ is not just norm-
continuous on B′ (with |‖T |‖B′ = |‖S|‖B ) but also w∗-w∗--continuous.

The converse follows from the general considerations about the w∗-dual spaces and
dual operators (well: now for the topological vector space (B, w∗).
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6 Standard Material which can be done anytime

6.1 Quotient Spaces

In the same way as within groups the “sub-objects” are subgroups (and not just sub-
sets), and linear algebra linear subspaces are natural objects one has to deal with closed
linear subspaces in the case of functional analysis. The natural “morphisms” (structure
preserving) applications are of course the bounded linear mappings resp. boundedly in-
vertible bijective linear mappings (called isomorphisms of normed spaces). Using these
to terms one can come up with the natural identification of the range space of a linear
map with the quotient of the domain of the linear map, divided by the null-space of the
linear mapping.

Recall the following situation in linear algebra (perfectly expressed by the SVD, the
singular value decomposition). There is even an orthonormal basis v1, · · ·vr, in the row
space of A (better: the column space of A′) with r = rank(T ), such that T : x→ A∗x,
maps this system onto an orthogonal basis of the column space of A.

Definition 33. For any subspace W ⊂ V the quotient V/W consists of equivalence
classes of elements, given by the equivalence relation x ∼W y if x + W = y + W. In
fact, x + W is the equivalence class generated by x and x ∼ y if and only if x− y ∈W.
Sometimes we write also [x]W for such an equivalence class.

Lemma 31. The quotient V/W, endowed with the natural addition 37

(x1 + W) +Q (x2 + W) := (x1 + x2) + W

i.e. we define
[x]W +Q [x]W := [x1 + x2]W

and the natural scalar product are (obviously) again a vector space.

Theorem 20. The mapping [x]W → ‖[x]W‖, defined by

‖[x]W‖ := inf
w∈W
{‖x + w‖V } (73)

is a norm on the quotient space if (and only if) W is a closed subspace of V .
Moreover, if V is complete, then also the quotient space V/W is a Banach space.

Proof. The first part, including the “if and only if” statement, is left to the reader. It is
interesting to see how the closedness comes into the game here.

For the completeness let us use the criterion involving absolutely convergent series.
Assume we have completeness of (V , ‖ · ‖V ) and a sequence (xn) is given, with

∞∑
n=1

‖[xn]W‖ = C <∞.

Since for fixed n ∈ N the quotient norm of the element is given as an infimum it is
always possible to find some wn ∈W such that for any fixed and given ε > 0 one has:

‖[xn]W‖ ≥ ‖xn + wn‖V + 2−nε.

37Just here we write +Q for the quotient addition, because it is a new addition.
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Then it is clear that also the series v0 :=
∑∞

n=1 xn + wn is absolutely convergent, in fact
v0 = x0 + w0 with

‖x0‖V ≤
∞∑
n=1

‖xn‖V

and

‖w0‖V ≤
∞∑
n=1

‖wn‖V ≤ ε.

Hence the class [x0]W has a representative with

‖x0 + w0‖ ≤
∞∑
n=1

‖[xn]W‖+ ε = C + ε,

but this is valid for any ε > 0, and consequently one has

‖[xo]W‖ ≤ C.

The convergence of the partial sums follows now easily by repeating the same argu-
ment to the tails of the series.

Given δ > 0 there exists n1 ∈ N such that

∞∑
n=n1+1

‖[xn]W‖ ≤ δ,

which implies that as a consequence this series is convergent as well, and the limit is
obviously the class [x0]W +

∑n1

n=1[xn]W. The above argument (replacing C above by δ
now) implies that

‖[x0]W −
N∑
n=1

[xn]W‖ ≤ δ,

as long as N > n1, and thus the proof is complete.

6.2 Finite Products of Banach spaces

Product: The (set-theoretical) product of two normed spaces can be endowed naturally
with various different, but equivalent norms, for example ‖(x, y)‖∞ = max(‖x‖, ‖y‖), or
‖(x, y)‖1 = ‖x‖+ ‖y‖) or ‖(x, y)‖2 =

√
(‖x‖2 + ‖y‖2).

For any finite Produkt the with respect to any of these norms is in fact equiva-
lent to coordinatewise convergence in the product space, i.e. norm convergence in the
appropriate norm of the component.

siehe Übungen
There is also a quite natural isomorphism theorem, which generalizes the fact that

in linear algebra matrix multiplication by some matrix A establishes an isomorphism
between the range space of the matrix, i.e. the column space of A, and the row-space
of A (hence row-rank equals column-rank), which can/should be identified with the
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quotient space of the domain (usually Rn) divided by the Null-space (A) of the mapping
x 7→ A ∗ x. In fact, it is well known that Rn = Null(A)

⊕
Row(A), as an orthogonal

direct sum (resp. Row(A)⊥ = Null(A)).
For linear operators between Banach spaces we have the following result:

Theorem 21. Given two Banach spaces (B1, ‖ · ‖(1)) and (B2, ‖ · ‖(2)) and a surjective,
bounded linear operator T ∈ L(B1,B2) we have the following natural isomorphism, in-
duced by the mapping T1 := T ∈ π, where π is the canonical projection from (B1, ‖ · ‖(1))
onto B1/Null(T ).

T1 : B1/Null(T )→ B2 (74)

defines an isomorphism of Banach spaces.

Proof. Recall that N := Null(T ) is a closed subspace of (B1, ‖ · ‖(1)) and hence the
quotient space if a well-defined Banach space (with the natural quotient norm). It is
clear that the mapping T1 : b + N 7→ T (b) is well defined, because any two elements
from b + N have the same image in B2 under T . It is also clear that T1 is surjective,
since it has the same range as T . Finally we have to verify that it is continuous. In fact
it has the same operator norm as T itself!

Note that we have to estimate T1([b]N) under the assumption that the norm of this
class in B1/N has norm ≤ 1 in the quotient norm. Hence for ε > 0 one can find some
b1 ∈ b +N such that ‖b1‖B1 ≤ 1 + ε, and consequently

‖T1(b +N)‖B2 = ‖T (b1)‖B2 ≤ |‖T |‖ ‖b1‖B1 ≤ |‖T |‖ (1 + ε).

Since such an estimate is valid for any ε > 0 we have

|‖T1|‖B1/N→B2 ≤ |‖T |‖B1→B2 .

The converse estimate is left to the reader for individual consideration!
In particular it is now clear that T1 is surjective, continuous and obviously injective

(since the nullspace of T has been “factored out”). Hence we can apply Banach’s theorem
and obtain that T1 defines an isomorphism.
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7 Hilbert Spaces and Orthonormal Bases

7.1 Scalar Products, Orthonormal Systems

still missing: Riesz representation Theorem, Gram-Schmidt orthonorma-
lization

For the classical Riesz Representation Theorem see
In this section the use of inner products (i.e. positive definite sesquilinear forms) will

be discussed.

Definition 34. A mapping from V ×V → K, usually described as (v1,v2)→ 〈v1,v2〉,
is called a sesqui-linear form if ... cf. linear algebra

It is called positive definite of 〈v,v〉 = 0⇒ v = 0.
For any pos. def. sesqui-linear form there is an associated norm, defined by the

expression ‖v‖ :=
√
〈v,v〉. A vector space V endowed with such a sequi-linear form

(viewed as a normed space) is called a pre-Hilbert space.
If the space V , endowed with this canonical norm is a Banach space, then it is called

a Hilbert space, and usually then the symbol H is used, resp. (H, 〈 · 〉).

Standard concepts are just like in linear algebra:

Definition 35. A family (xi)i∈I in (H, 〈 · 〉) is called an orthogonal system if 〈xi, xj〉 = 0
for i 6= j. It is called an orthonormal family, if 〈xi, xj〉 = δi,j (Kronecker delta).

Ideas, goals: Every separable Hilbert space (H, 〈 · 〉) has a countable orthonormal
basis, thus establishing an isometric (in fact unitary) isomorphism betweenH and `2(N).
This is essentially another application of the idea of the Gram-Schmidt method in the
context of the Hilbert spaces.

Alternative symbol used: H = H .

Definition 36. A bounded linear mapping T from (H, 〈 · 〉) to (H, 〈 · 〉) is unitary if it
is surjective and satisfies

〈Tx, Ty〉 = 〈x,y〉, ,∀x,y ∈ H. (75)

Evidently this implies that T is isometric, i.e. ‖Tx‖H = ‖x‖H for all x ∈ H, hence
injective, thus consequently a bijective linear mapping.

Remark 16. The preservation of scalar products (or equivalently, by the polarization
identity, at least for Hilbert spaces over C), equivalent to the preservation of length (and
also the preservation of angles) by itself is only equivalent with the identity T ∗T = IdH,
but T might not be invertible in such a case, because the range can be a proper subspace!
(if and only if the Hilbert space is infinite dimensional).

The right shift T1 on `2(N), which maps [x1, x2, . . . ] into [0, x1, x2, . . . ] is a classical
example. Obviously it is not surjective but isometric. Check why the left shift (dropping
the first coordinate!!!) is just T−1 and consequently the reverse composition, namely
T1 ◦ T−1[x1, x2, . . . ..] = [0, x2, x3, . . . ] and is not the identity!!
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For the case K = C also the converse is true, due to the polarization identity:
Make a connection to the so-called polarization identity which hold true for arbitra-

ry complex Hilbert spaces H . For any x, y ∈ H the scalar product 〈x, y〉H can be
expressed as a sum of norms:

〈x, y〉H =
1

4

3∑
k=0

ik〈(x+ iky), (x+ iky)〉H =
1

4

3∑
k=0

ik‖x+ iky‖2
H , (76)

where i denotes to complex unit in C.
There are a few important basic facts concerning unitary linear mappings on a Hilbert

space:

Lemma 32. • The family of unitary operators on a Hilbert space (H, 〈 · 〉) forms a
(usually non-commutative) group of operators; in particular the composition of two
unitary operators as well as the inverse of a unitary operator is again unitary.

• A bounded linear operator on a Hilbert space if unitary if and only if it maps any
complete orthonormal system into a complete orthonormal system;

• A bounded linear mapping is unitary if and only if it has an infinite matrix re-
presentation with respect to some fixed complete orthonormal system (hi)i∈I , with
coefficients which form a complete orthonormal system for `2(I) (where I is the
index set of that orthonormal basis).

One could even claim that the unitary group acts transitively on the set of all complete
orthonormal systems in a given Hilbert space, i.e. for any two such systems there exists a
(uniquely determined) unitary transformation of the underlying Hilbert space mapping
one onto the other.

The usage of orthonormal systems (and in particular orthonormal bases for separable
Hilbert spaces) is very much like that use of unitary matrices for vectors of length n,
and matrices describing the general linear mappings from Cn to Cn.

As a first lemma (good Exercise!) we state:

Lemma 33. Assume that (xi)i∈I is any orthonormal system in a Hilbert space (H, 〈 · 〉).
Then the length of any finite linear combination (only a finite set F ⊂ I of coefficients
is non-zero) of the form x =

∑
i∈F cixi is just the Euclidean length of the coefficient

vector, or more explicitly ∥∥∥∥∥∑
i∈F

cixi

∥∥∥∥∥
H

=

√∑
i∈F

|ci|2. (77)

As a consequence (taking limits) one has: the infinite sum is (in fact then automa-
tically unconditionally, but not necessarily absolutely, convergent to x0 =

∑
i∈I cixi if

and only if the coefficient sequence (ci) ∈ `2(I). In fact, if it is a Cauchy sequence, the
corresponding sequence of coefficients (more precisely: the collection of coefficients, with
all but finitely many non-zero coefficients put to zero, indexed by the collection of finite
subsets F ⊂ I) forms a Cauchy sequence in `2(I) (and vice versa).

Another nice/easy consequence is the following: Whenever J ⊆ I is any subset, be it
finite of infinite, it is guaranteed that for (ci) ∈ `2(I) the sum

∑
i∈J cixi is well defined.

Another easy exercise would be to establish the following fact:
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Lemma 34. For the one-dimensional subspace Vy generated by a vector y ∈ H (we
may assume for convenience that ‖y‖H = 1) the orthogonal projection onto Vy is given
by the mapping

x 7→ 〈x,y〉y, x ∈ H. (78)

We need one more observation:

Theorem 22. For any given (finite or infinite) set J ⊆ I we consider the closed linear
span of the subfamily (xi)i∈J of an orthonormal family (xi)i∈I , which we denote by VJ .

Then for any x ∈ H we can define the mapping

PJ : x→
∑
i∈J

〈x,xi 〉xi, x ∈ H, (79)

which describes the orthogonal projection from H onto VJ .
In particular we have:

‖x− PJ(x)‖H ≤ ‖x− vJ‖, ∀vJ ∈ VJ . (80)

It is part of the claim above that for any subset and any family J the sum∑
i∈J

〈x,xi 〉xi

is convergent in H, for any x ∈ H (because it is obviously a CS, thanks to Pythagoras!).
The sum is just the projection onto the (automatically closed!) linear span of the elements
(xj)j∈J .

It is not even necessary that those projections are one-dimensional, but it could be
general projections, as long as they are pairwise orthogonal. So assume that one has
a sequence of pairwise orthogonal projections (Pl)l∈I , with Pl ◦ Pl′ = 0 for l 6= l′, then∑

l∈I Pl(x) is convergent (and the limit is the orthogonal projection onto the closed linear
span of all the spaces involved).

The above result can also be described as a description of the projection of PJ as
diagonal matrices with entries 1 for i ∈ J and 0 for i ∈ I \ J . There are other operators
obtained in this way (we are preparing the stage for the diagonalization results for
compact self-adjoint linear operators on Hilbert spaces).

The topic of “matrix representations” is an interesting in itself.
The notion of compactness is the same as in Rd and we thus just recall the definition:

Definition 37. A subset M ⊂ (V, ‖ · ‖) is compact if for any ε > 0 every covering by
ε-balls there exists a finite (sub-)covering of M .

7.2 Compact sets in concrete Banach spaces

It is of course interesting to study (relatively) compact set in concrete Banach spaces.
One of the classical examples in the literature (see e.g. [4], p.175) is the so-called Arzela-
Ascoli Theorem, a prototype result characterizing relative compactness in (C(X), ‖ · ‖∞)
over compact domains.
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Theorem 23. [Arzela-Ascoli Theorem] A bounded and closed subset of M ⊂ (C(X), ‖ · ‖∞),
where X is a compact (hence completely regular) topological space, is compact if and on-
ly if it is equicontinuous, which means: For every ε > 0 and x0 ∈ X there exists some
neighborhood U0 of x0 such that

|f(z)− f(x0)| ≤ ε, ∀f ∈M.

Remark 17. Since it is also true that a continuous functions on a compact, metric space
(to take the easy case of a [?]) one even could say that a set M of continuous functions on
a compact, metric space X (e.g. any compact subset of Rd) is uniformly equicontinuous
on X if

∀ε > 0 ∃δ > 0 : |x− y| < δ ⇒ |f(x)− f(y)| < ε ∀f ∈M. (81)

In other words, the δ > 0 d depends only on ε but not on the position x nor on the
function f chosen, as long as f ∈M .

The characterization of relatively compact subsets of
(
C0(Rd), ‖ · ‖∞

)
is given as Ex.

17 (p.177) in [4]:

Theorem 24. A bounded and closed subset M ∈ C0(Rd) (with the sup-norm) is re-
latively compact resp. totally bounded if and only it is (uniformly) equicontinuous and
tight, i.e. as the property

∀ε > 0 ∃R > 0 such that: |f(x)| ≤ ε if only |x| ≥ R, ∀f ∈M. (82)

There are certain manipulations which one can carry out with compact sets. The
best way to verify these results is to use their characterization using the concept of total
boundedness (for every ε > 0 there exists a finite covering [chosen by the user!] with balls
of radius at most ε). >> Ex.!

Lemma 35. For every totally bounded set M set the closure is totally bounded as well.
In principle we even have much more: Assume that a set M0 is - with respect to the
Hausdorff distance - the limit of a sequence of totally bounded sets Mn, then M0 is itself
a totally bounded set.

The continuity of addition gives:

Lemma 36. Given two compact sets M1 and M2 in some normed space (V, ‖ · ‖), then
also the complex sum M1 +M2 is a compact subset of (V, ‖ · ‖).

Certainly slightly more surprising, although not too difficult to prove, using the ideas
of the above two lemmas, is the following Theorem of Mazur:

Proposition 12. ( [4],p.180): Assume that M is a totally bounded set, then the closed
convex hull of M , i.e. the closure of the set of all convex linear combinations of the form

y =
K∑
k=1

ckmk, with
K∑
k=1

ck = 1, ck ≥ 0,

is totally bounded in (V, ‖ · ‖) as well.
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7.3 Compact Operators

Definition 38. A linear operator T from a Banach space (B1, ‖ · ‖(1)) to (B2, ‖ · ‖(2))
is a compact operator if the image of any bounded set M ⊂ B1 within B2 is relatively
compact, i.e. has compact closure.

We will write B0(B1,B2) for the family of all such compact operators.

A nice result which we will not prove here, see [11], Satz 11.3, is due to Schauder:

Theorem 25. A continuous operator T ∈ L(B1,B2) is compact if and only if the dual

operator T ′ ∈ L(B2′,B1′) is compact.

Proof. In principle only one direction has to be shown, namely that the compactness
of T implies the compactness of T ′, because then this argument can be used to prove
that the compactness of T ′ implies the compactness of T ′′, but the restriction of T ′′ to
iB1(B1) ⊂ B1′′ is then compact as well. This is just one of the arguments, the rest is
left to the reference.

One of the standard results (mentioned here without proof) is the following one:

Lemma 37. For any Hilbert space H the closure of the subspace B0,0(H) of all finite rank
operators within L(H) is exactly the closed subspace, in fact closed ideal of all compact
operators, i.e. B0(H).

The Arzela-Ascoli Thm. is also at the basis of a proof that for certain Banach spaces
(such as (C(X), ‖ · ‖∞)) a similar statement is valid, but it is not true for general Banach
spaces:

Lemma 38. If X is compact, then the finite rank operators are dense in the compact
operators (of course with respect to the operator algebra norm).

Proof. Just a hint: on is using finite dimensional approximations using kind of quasi-
interpolation operators, which in the most simple case would be piecewise linear inter-
polation operators. Details are in [4], p.176.

It is a good exercise to check that the compact operators form a closed subspace
within bounded linear mapping from the Banach space B1 to B2, i.e. within the operator
space B(B1,B2).

It is an important observation that due to the general properties of a complete me-
tric space (hence a Banach space), that a set is relatively compact if and only if it is
precompact, which means (by definition): For every ε > 0 there exists a finite covering
by balls of radius ε. In fact, from a purely logical point of view it is trivial that relative
compactness implies precompactness, so only the converse if of some interest (proof not
given here), because obviously for every set M it is true that its closure is contained
in the union of all balls of the form Bε(m), where m runs through the set M . If this
(trivial) covering has a finite subcovering, we have the situation of prae-compactness.

There is also the notion (just another word) of total boundedness of a set:
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Definition 39. A set M in a metric space is totally bounded if for every ε > 0 there
exists some finite covering of M of the form

M ⊆
K⋃
k=1

Bε(xi)

It is of course equivalent to say: there exists a finite subset x1, . . . , xK of points
(Exercise: those points my be choosen from the ambient space X or even from M itself,
since the request is made for every ε > 0! [check!]) such that each point m ∈ M is at
most at distance ε to one of these points, i.e.

sup
m∈M

[
inf

1≤k≤K
d(xk,m)

]
≤ ε.

In the discussion of compact operators we also need another class of operators.

Definition 40. Given two Banach spaces B1,B2 an operator is said to be completely
continuous if for any sequence which is weakly convergent in B1, the image is norm
convergent (in (B2, ‖ · ‖(2))).

See the section on the UBP or PUB above!

Remark 18. As a preparatory step of the next result we wont to point out that the
weak topology is a Hausdorff topology in particular, weak limits are unique, or more
concrete: If a net (bγ) is convergent to a limit element b0 and another limit element c0

then b0 = c0 ∈ B. This is in fact clear because b0 − c0 6= 0 would imply the existence
of some bounded linear functional b′ ∈ B′ of norm one with b′(b0 − c0) or equivalently
b′(b0) 6= b′(c0), which is inconsistent with the fact that b′(bγ) is convergent to both
b′(b0) and b′(c0) by assumption.

The following result is just a transcription of Satz 11.4 in [11].

Proposition 13. 1. A compact operator between Banach spaces is always completely
continuous;

2. if (B1, ‖ · ‖(1)) is a reflexive Banach space (e.g. a Hilbert space) then the converse
is true as well.

Proof. (a) First we have to show that a compact operator T maps a weakly sequence or
net, say (bα) into a norm convergent net (T (bα))α∈I . What is clear (from the bounded-
ness of T is the fact that this new sequence/net is bounded.

So let us assume the contrary, i.e. that there is a weakly convergent sequence (bn)
with limit b0 such that T (bn) (which is known to be weakly convergent to T (b0)) would
not have a convergent subsequence with limit T (b0), or equivalently there is some ε0 > 0
such for some subsequence (bnj

) one has

‖T (b0)− T (bnj
)‖B ≥ ε0 forj ∈ N.

Since (T (bnj
))j≥1 is the image of a bounded sequence (recall: weak convergence implies

weak boundedness which is the same as boundedness, due to the PUB!) it is relatively
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compact (in a metric space) hence totally bounded and from this (Heine-Borel-type)
argument we obtain that it has a convergent (further) subsequence (T (bnjk

))k≥1. But
this sequence cannot have as a (strong or weak) limit the “expected” element T (b0),
because all its elements are at a fixed minimal distance away from it (by the construction
of the index sequence (nj)j≥1.

(b) For the second part just observe that a weakly convergent sequence in
(
B, ‖ · ‖B

)
must be bounded (by Banach-Steinhaus, see ??) and therefore (by Banach-Alaoglu,
combined with the reflexivity of the space) must have a weakly convergent subsequence
(bnj

)j≥1.38.
Of this implies norm convergence of T (bnj

)j≥1 we have established the existence of
a norm convergent subsequence of (T (bn))n≥1, hence compactness.

comment: to be put elsewhere probably,earlier!

Remark 19. See [4], p.173. The proof makes use of the PUB (Principle of Uniform
Boundedness). If a sequence (xn) is weakly convergent, i.e. x′(xn) is convergent in C for

any x′ ∈ B1′, then it has to be (norm!) bounded.

The converse is not discussed here, but we will make use of the equivalence of those
concepts below!

http://en.wikipedia.org/wiki/Compact_operator_on_Hilbert_space

Definition 41. An operator T from a Banach space (B1, ‖ · ‖(1)) to (B2, ‖ · ‖(2)) is
a finite rank operator if the range of T , i.e. T (B1) is a finite dimensional subspace of
(B2, ‖ · ‖(2)).

It is not too difficult (but also not trivial) to show that

Lemma 39. An operator T from a Hilbert space H1 to another Hilbert space H2 is com-
pact if and only if it can be approximated in the operator norm by finite rank operators.

Proof. One direction is relatively obvious. Let M the image of B1(0) under T , and let
Bε(yj) be a covering of M .

..........
Assume that for every ε > 0 there exists some finite-rank operator T1 such that

|‖T − T1|‖ ≤ ε/2

We also need information about self-adjoint operators on Hilbert spaces, i.e. operators
which are “highly compatible” with the scalar product on the given Hilbert spaces.

Definition 42. A bounded linear operator T on a Hilbert space (H, 〈 · 〉) is called self-
adjoint if one has

〈Tx,y〉 = 〈x, Ty〉 for x,y ∈ H. (83)

38For separable Banach spaces
(
B, ‖ · ‖B

)
this follows from general consideration, allowing to replace

nets by sequences, describing topological properties, for the general case a small extra argument has to
be used, which is explained in Satz 10.14, p.199, of [11]
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The spectral theorem for compact self-adjoint operators is the analogue of the spectral
theorem for symmetric matrices and reads as follows:

Theorem 26. Let T be a self-adjoint and compact operator on a Hilbert space (H, 〈 · 〉).
Then there exists an orthonormal system of vectors (hn)∞n=1 and a null- sequence of real
eigenvalues, i.e. (cn)∞n=1 ∈ c0 such that

Tx =
∞∑
n=1

cn〈x,hn〉hn for x ∈ H. (84)

One of the important steps towards the proof of this theorem is to find that there is
a “realization” of the maximal eigenvalue, i.e. a vector whose length is multiplied under
the action of T by exactly the operator norm |‖T |‖ , or in other words, there exists a
unit vector x ∈ H with ‖x‖H = 1 such that ‖Tx‖H = |‖T |‖ .

MATERIAL of Jan. 16th, 2014

Theorem 27. a) For any self-adjoint linear operator T = T ∗ in L(H) on has

|‖T |‖ = sup{|〈Tx,x〉, ‖x‖B ≤ 1}.

b) For normal operators T (i.e. with T ∗T = TT ∗) the operator T ∗T is self-adjoint and

|‖T ∗T |‖ = |‖T |‖ 2.

Proof. Let us set q(T ) := sup{|〈Ty,y〉‖y‖B ≤ 1}.
Then it is clear that

|〈Tz, z〉| ≤ q(T )‖z‖2
H, z ∈ H. (85)

MORE (page 136 of [11], Satz 7.10). Also making use of the parallelogram rule: Ano-
ther important fact which can be verified by (lengthly but simple) direct computation
is the so-called parallelogram rule:

‖ξ + η‖2 + ‖ξ − η‖2 = 2(‖ξ‖2 + ‖η‖2), for ξ, η ∈ H. (86)

Since the quadratic form QT (z) := 〈Tz, z〉 on H takes only real values the parallelo-
gram rule can be applied and gives us

4Re〈Tx,y〉 = QT (x + y)−QT (x− y).

For given x,y with ‖x‖H ≤ 1, ‖y‖H ≤ 1 there exists α ∈ C with |α| = 1 such that

|〈Tx,y〉| = 〈Tαx,y〉 =
1

4
(QT (αx + y)−QT (αx− y)) ≤

≤ 1

4
q(T )

(
‖αx + y‖H2 + ‖αx− y‖H2) ≤ 1

2
q(T )

(
‖αx‖‖H2 + ‖y‖‖H2) = q(T ).

Taking now the sup over all y ∈ B1(0)
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Lemma 40. Let T be a self-adjoint and compact operator on a Hilbert space (H, 〈 · 〉).
Then there exists a unit vector in H, i.e. x ∈ H with ‖x‖H = 1, such that ‖Tx‖H = |‖T |‖ .

Proof. For ε = 1/n there exists some xn ∈ H with ‖xn‖H = 1 such that ‖Txn‖H ≥
|‖T |‖ − 1/n. Since the image of the unit ball in H under T is a relatively compact set
there is a subsequence (xnk

) such that Txnk
is convergent, to some limit, say x0 ∈ H.

Since the norm is continuous on (H, 〈 · 〉) (as on any Banach space) we have ‖x0‖H =
limk→∞ ‖Txnk

‖ = |‖T |‖ . For convenience of notation let us relabel this sequence simply
to (xk)k≥1.

Let us now look at the scalar products 〈Txk,xk〉. Since T = T ∗ it follows that this
are real numbers. In fact:

〈Tx,x〉 = 〈T ∗x,x〉 = 〈x, Tx〉 = 〈Tx,x〉.

REST open! [11], p.233

The following theorem is just a nice application of the closed graph
theorem and will not be presented during the course!

An interesting consequence of the Closed Graph Theorem is the Theorem of Hellinger-
Toeplitz: (see [11], p.153, for the proof).

Proposition 14. Let T be a linear and self-adjoint mapping on (H, 〈 · 〉). Then T is
continuous.

Proof. Assume there is a convergent sequence (xn) in H with x0 = limn→∞ xn and
y = limn→∞ T (xn). Then one has for z ∈ H:

〈Tx0, z〉 = 〈x0, Tz〉 = lim
n→∞
〈xn, Tz〉 = lim

n→∞
〈Txn, z〉 = 〈y, z〉,

and hence y = Tx0, i.e. T has a closed graph, and therefore it is a bounded linear
mapping on H.

END of the interlude
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Theorem 28. Let (xi)i∈I be an orthormal family in a Hilbert space (H, 〈 · 〉). For any
bounded sequence (ci)i∈I the operator defined by the (in fact unconditionally convergent)
series

T : x 7→
∑
i∈I

ci〈x,xi〉xi, x ∈ H, (87)

defines a bounded operator, with |‖T |‖ = ‖c‖∞.
The operator is compact if and only if (ci)i∈I tends to zero, i.e. for every ε > 0 there

exists a finite subset J0 ⊂ I such that one has |cj| ≤ ε > 0 for all i ∈ I \ Jo.

Remark 20. For the case of the system of pure frequencies

χn(t) := e2πint, t ∈ [0, 1], n ∈ Z,

the corresponding operators are called Fourier multipliers because they are operators
which are just multiplication operators “on the Fourier transform side”. Originally they
arose in the process of inverting the Fourier transform, i.e. the question of recovering
the function from its Fourier coefficients. In fact, the naive approach (taking simply
more and more Fourier coefficients, resp. summing up from −K to K was giving some
problems, known as Gibb’s phenomenon. In other words, the simple view-point of L2-
analysis (and best approximation in the quadratic mean) was somewhat in conflict with
pointwise considerations, at least as soon as functions having discontinuities come into
the picture.

8 Spectral Theory for Compact Operators

Without doubt the existence of a complete orthonormal basis of eigenvectors which al-
lows the diagonalization of an arbitrary given symmetric (resp. self-adjoint) matrix is
one of the high-lights in linear algebra. It is also the basis for many other important ap-
plications, such as the SVD (Singular Value Decomposition), the polar-decomposition of
matrices, minimal norm least square solutions to linear equations, i.e. the determination
of the pseudo-inverse matrix and other questions.

It is also clear, that a basis of eigenvectors is ideally suited to understand the operator
(in terms of the corresponding diagonal matrix). Invertibility (only non-zero diagonal
elements), inversion, pseudo-inversion can also easily determined in this basis.

So in a functional analytic setting the question is: How can the so-called spectral
theorem be generalized. What could be the right setting? Is there a natural analogue for
the finite-dimenionsal setting?

At first sight it is most natural to concentrate on the setting of Hilbert spaces, because
only there the concept of self-adjointness makes sense. Recall, that a bd. linear operator
T on a Hilbert space (H, 〈 · 〉) is self-adjoint if and only if

〈Tx,y〉H = 〈x, Ty〉H ∀x,y ∈ H. (88)

Note that this definition depends on the particular choice of the scalar product on
the Hilbert space (in fact, one can have many different scalar products which define
equivalent norms, but with a very different set of self-adjoint operators!).

Hence one may ask for eigenvectors for general self-adjoint operators. Of course we
have the usual definition:
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Definition 43. A non-zero vector h ∈ H is called an eigen-vector for the linear operator
T ∈ L(H) if there exists some λ ∈ K such that T (h) = λh. Obviously λ is called an
eigenvalue for T , and h is called an eigenvector corresponding to the eigenvalue λ.

One of the new questions is the following one: Does every self-adjoint linear operator
on a given Hilbert space have some eigen-vector?

Note that there is a problem for quite simple and natural operators, say multiplication
operators Mh : f 7→ h · f on H = L2(Rd). One may think of h(x) = exp−π|x|2 (the
normalized Gaussian function) or h(x) = 1/(1 + |x|2)s (for some s > 0). These are
prototypical examples of self-adjoint and injective (!check it out) linear operators on
L2(Rd) (think of d = 1), however without having λ = 0 as eigen-value! In fact, for any
possible value λ ∈ R the level-set of h is a set of measure zero (two points in the case
of d = 1) and consequently every possible f ∈ L2(Rd) will not just be multiplied by a
given number! (details are left to the reader).

This also raises the question, of what the “spectrum” of such an operator should be.
Since obviously the set of eigenvalues is only a proper subset of the set of all numbers in
C (selfadjoint operators can have only real eigenvalues, however, as in the linear algebra
case!) of the set of all values where T − λIdH is not invertible one has to see how to
describe the spectrum of T : We will put ourselves in a more general context, i.e. that
of the Banach algebra L(H) of bounded linear operators with the operator norm, so we
write (L(H), |‖ · |‖ ) from now on.

Definition 44. Given any Banach algebra (A, ‖ · ‖A) with unit element e the spectrum
of a ∈ A is defined as the set of all (complex) numbers λ ∈ C such that a − λe is not
invertible:

spec(a) := {λ | a− λe is not invertible in A}

Just to repeat, invertibility of T ∈ L(H) means that there exists another operator S
such that S ◦ T = IdH = T ◦ S.

Fortunately the situation is quite different for compact self-adjoint operator. Such
operators will have at least ONE non-trivial eigenvector, and by a reduction argument
one can find the other, i.e. remaining eigenvectors, corresponding to a sequence of eigen-
values which tends to zero!

Remark 21. The spectral theory for self-adjoint operators (resp. normal operators) ge-
neralized of course the familiar theory which is part of linear algebra courses. On the
other hand it is itself a special instance for the theory of commutative C∗-algebras A,
where the Gelfand-theory shows (using the maximal ideals in such algebras, resp. the
multiplicative, bounded linear functionals on such Banach algebras (with the defining
property that ‖aa∗‖A = ‖a‖A2) to identify them in a canonical way with some space
(C(X), ‖ · ‖∞), where X is a suitable topological (compact) space, whenever A has a unit
element (otherwise such an element has to be adjoined, by turning the direct sum A

⊕
C

into an algebra, containing a copy of A (via a ≈ (a, 0),) with “natural” multiplication
rules of the form

(a, λ)(b, µ) ≈ (a + λId)(b + µId) = (ab + λb + µa) + λµId ≈ (ab + λb + µa, λµ).
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9 Comparing Linear Algebra with Functional Ana-

lysis

Linear Algebra Functional Analysis

matrix bounded linear operator

generating system Frame (stable)
generating system total subset

linear independent system Riesz basic sequence

10 Frames and Riesz projection bases

While it is easy to explain how the concept of orthonormal bases can be extended to the
situation of Hilbert spaces, it turns out that the concepts of “generating system” and
“linear independence” appear to have natural generalizations to the non-finite
dimensional situation, but this is a bit deceptive!

Let us recall the situation. The definition of a total set (see definition 2 appears as a
quite natural generalization of the concept of generating system in a finite dimensional
vector spaces) is useful and wide spread, but has to be distinguished from the idea
that the elements of a set (a candidate for a basis) allows to write every element as a
series. Well, one has to be quite careful in the infinite dimensional setting, because there
are conditionally convergent series (the order of elements matters!) and unconditionally
convergent series (any permutation of the index set is allowed without changing the fact
that the corresponding series is convergent and in addition all those possible limits are
the same!).

This is something which is NOT required in the case of a total set. Given v and ε > 0
we just claim that ‖v−

∑K
k=1 ckmK‖V≤ ε for a suitable choice of elements m1, . . . ,mk ∈

M and appropriate coefficients, but if a better approximation is required a completely
different and new set of elements and coefficients might do the job, and in addition the
norm of the (finite) sequence in CK need not be controlled, in fact, it may tend to ∞
for ε→ 0.

Hence there is a much better concept relevant, which guarantees that every element
can be written as an infinite and unconditionally convergent sum with `2-coefficients.

Definition 45. A family (fi)i∈I in a Hilbert space H is called a frame if there exist
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constants A,B > 0 such that for all f ∈ H

A‖f‖2 ≤
∑
i∈I

|〈f, fi〉|2 ≤ B‖f‖2 (89)

Alternative Symbol for H !
It is well known that condition (89) is satisfied if and only if the so-called frame

operator

Definition 46.
S(f) :=

∑
i∈I

〈f, fi〉fi, for f ∈ H

is invertible. The obvious fact S ◦ S−1 = Id = S−1 ◦ S implies that the (canonical)
dual frame (f̃i)i∈I , defined by f̃i := S−1(fi) has the property that one has for f ∈ H:

Definition 47.
f =

∑
i∈I

〈f, f̃i〉fi =
∑
i∈I

〈f, fi〉f̃i (90)

Since S is positive definite in this case we can also get to a more symmetric expression
by defining hi = S−1/2gi. In this case one has

f =
∑
i∈I

〈f, hi〉hi ∀f ∈ H. (91)

The family (hi)i∈I defined in this way is called the canonical tight frame associated to
the given family (gi)i∈I .

Remark 22. Note that frames are “indexed families” of vectors, and not just sets. It is
quite possible that a given vector appears finitely many times within a frame (if the
length is fixed) or even infinitely many times, if their norms behave properly. On the
other hand it is not just a sequence, because the order of elements does not play any
role, and of course the frame operator of a permuted sequence is just the same (and
correspondingly the dual frame or tight frame are permuted in the same way!).

LITERATURE: Book by Ole Christensen: [3]
If the frame is also linear independent in a suitable way, the family deserves the name

Riesz basis.
Overall (this has to be describe in more detail later on) one can say: Using the

concepts of frames, Riesz bases and Riesz basic sequences (as replacement for total,
basis, or linear independence) in the Hilbert space setting allows to have a setting which
is very similar to the finite dimensional setting, including also solutions to the minimal
norm least square problem.

Definition 48. A sequence (hk) in a separable Hilbert space H is a Riesz basis for its
closed linear span (sometimes also called a Riesz basic sequence) if for two constants
0 < D1 ≤ D2 <∞,

D1‖c‖2
`2 ≤

∥∥∥∑
k

ckhk

∥∥∥2

H
≤ D2‖c‖2

`2 , ∀c ∈ `2 (92)
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A detail descripton of the concept of Riesz basis can be found in ( [18]) where the
more general concept of Riesz projection bases is explained.

In particular a sequence (hk) is a Riesz basis if and only if the corresponding Gram
matrix, whose entries are the scalar products (< hk, h

′
k >)k,k′ is invertible on the corre-

sponding `2-space.
[1]: Book entitled: “Studies in Functional Analysis”.

Or in GERMAN:

Lineare Algebra Funktionalanalysis

Matrix (beschränkter) linearer Operator

Erzeugendensystem Frame (stabil)
Erzeugendensystem totale Teimenge

linear unabhängige Menge Riesz Basis

FOR people reading GERMAN material I can recommend to take a look at my
lecture notes on LINEAR ALGEBRA, especially the last section (from p. 86 onwards):

http://www.univie.ac.at/nuhag-php/login/skripten/data/MainLinAlg12.pdf

where many results (and views) of the linear algebra background are explained in more
detail.
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11 Convolution algebras

Material concerning convolution is also found in Conway’s book [4].

11.1 Locally compact Abelian Groups

LCA:= Locally Compact Abelian Group
Conway, p.189 (Example): convolution defined in the measure algebra, convolution

with δe (e = neutral element in G ) is the identity element in M(G ). Moreover one has
(end of page 189:

δx ∗ δy = δxy, ∀x, y ∈ G .

The group algebra M(G ) is commutative (Abelian) if and only if the group G is Abelian.
Furthermore,

(
L1(G), ‖ · ‖1

)
is a closed idealR (using the Radon-Nikodym Theorem and

the concept of absolutely continuous functions over groups!).
Continuation of the material then in section VII.9, page 223. Continuous shift pro-

perty in
(
Lp(G), ‖ · ‖p

)
, for 1 ≤ p <∞, based on the density of Cc(G ) in these Banach

spaces.
The very last Appendix C in [4] shows how dual of C0(X) can be identified with

the space of regular Borel measures on X (but what are the exact assumptions: X
locally compact!? ... ). At appears to be built on the Hahn-Jordan Decomposition
for signed measures and the Radon-Nikodym Theorem characterizing absolutely
continuous measures! The correct reference is Thm.C18 (the Riesz Representation
Theorem!), showing that there is an isometric isomorphism between (Mb(G), ‖ · ‖Mb

)
and

(
C ′0(G), ‖ · ‖C′0

)
(for “general” X, not just locally compact groups, whatever this

means!).

12 Various Facts

One can use the Krein-Milman Theorem to verify that cosp is NOT a dual space. This
would also follow from the fact that it a solid BF space (Banach function space in the
terminology of Luxemburg and Zaanen) but fails to have to Fatou property.

13 Further Literature

Most of the books mentioned below are to be found in the NuHAG library at 5.131,
OMP1, next to my office.

1. x [Heil, Christopher] A Basis Theory Primer. Expanded ed. [8]

2. x [Christensen, Ole] An Introduction to Frames and Riesz Bases. [3]

3. x [Grc̈henig, Karlheinz] Foundations of Time-Frequency Analysis [7]

4. x [Daubechies, Ingrid] Ten lectures on wavelets [5]
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